Viết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
a) \(A = \ln \left( {\frac{x}{{x - 1}}} \right) + \ln \left( {\frac{{x + 1}}{x}} \right) - \ln \left( {{x^2} - 1} \right);\)
b) \(B = 21{\log _3}\sqrt[3]{x} + {\log _3}\left( {9{x^2}} \right) - {\log _3}9.\)
\(a,A=ln\left(\dfrac{x}{x-1}\right)+ln\left(\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x}{x-1}\cdot\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\cdot\dfrac{1}{x^2-1}\right)\\ =ln\left[\dfrac{1}{\left(x-1\right)^2}\right]\\ =2ln\left(\dfrac{1}{x-1}\right)\)
\(b,21log_3\sqrt[3]{x}+log_3\left(9x^2\right)-log_3\left(9\right)\\ =7log_3\left(x\right)+log_3x^2+log_39-log_39\\ =7log_3x+2log_3x\\ =9log_3x\)