Cho tam giác ABC cân tại A . Lây điểm D trên cạnh AB ,điểm E trên cạnh AC sao cho AD=AE.Gọi K là giao điểm của CD và BE
Chứng minh:
A)BE=CD
B) Tam giác KBC là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác ABC cân tại A nên AB=AC;B=C
Xét tam giác AEB và tam giác ADC có:
Góc A chung
AB=AC(cmt)
AD=AE(gt)
=> Tam giác ADC=tam giác AEB
=>BE=CD và góc ABE= góc ACD
b, Ta có
A+B+C=180(tổng 3 góc của tam giác)
B+C=180-A (1)
Và A+D+E=180
D+E=180-A (2)
Từ (1) và (2)=>B+C=D+E
Mà B=C và D=E
=>C=E
Mà 2 góc ở vị trí đồng vị
=>DE//BC
c, Ta có
B=C (cmt)
góc ABE= góc ACD(cm ở câu a)
Mà B-ABE=EBC
và C-ACD=DCB
=> góc EBC = góc DCB
=> tam giác KBC cân tại K
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
a: Xet ΔAEB và ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xet ΔKDB và ΔKEC có
góc KDB=góc KEC
DB=EC
góc KBD=góc KCE
=>ΔKBD=ΔKCE
c: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
=>ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
a) Xét ΔABE vuông tại A và ΔACD vuông tại A có
AB=AC(ΔABC vuông cân tại A)
AE=AD(gt)
Do đó: ΔABE=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BE=CD(Hai cạnh tương ứng)
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
a)Xét ΔABE và ΔACD có:
AB=AC(GT)
góc BAC chung
AE=AD(GT)
=>ΔABE=ΔACD(C.G.C)
⇒BE=CD(2 CẠNH TƯƠNG ỨNG)
góc ABE= góc ACD( 2 góc tướng ứng)
b)Có:AB=AC(GT)
Mà:AD=AE(GT)
=>AB-AD = AC-AE
=>BD=CE
Xét ΔBMD và ΔCME có:
góc ABE= góc ACD(CMT)
BD=CE(CMT)
góc BMD=CME(2 góc đối đỉnh)
=>ΔBMD=ΔCME(ch-gn)
=>BM=CM(2 cạnh tương ứng)
c)Xét ΔBAM và ΔCAM có:
AB=AC(GT)
AM chung
BM=CM(CMT)
=>ΔBAM=ΔCAM(c.c.c)
=>góc BAM= góc CAM(2 góc tướng ứng)
=>AM là tia phân giác góc BAC(ĐPCM)
a: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b; ΔABE=ΔACD
=>góc ABE=góc ACD
góc ABE+góc EBC=góc ABC
góc ACD+góc DCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc EBC=góc DCB
=>góc KBC=góc KCB
=>ΔKBC cân tại K