K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a) 7 và \(\sqrt{51}\)

Ta có: \(7^2=49\)

           \(\left(\sqrt{51}\right)^2=51\)

Do 51 > 49 nên \(\sqrt{51}\)>  7

b) \(\sqrt{63}\)và  8

Ta có: \(\left(\sqrt{63}\right)^2=63\)

           82 = 64

Do 64 > 63 nên 8 > \(\sqrt{63}\)

c) \(-\sqrt{\frac{3}{25}}\)và -0,4

\(-\left(\sqrt{\frac{3}{25}}\right)^2=-\sqrt{\frac{3}{25}}\)\(=-0,12\)

Do -0,12 > -0,4 nên -0,4 > \(-\sqrt{\frac{3}{25}}\)

29 tháng 6 2017

Cái phần c) mình nhầm nhé...

Do -0,12 > -0,4 nên \(-\sqrt{\frac{3}{25}}\)> -0,4 .Bạn sửa lại giúp mình.

23 tháng 4 2021

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

28 tháng 5 2021

a) Ta có: 33=32.3=9.3=2733=32.3=9.3=27

Vì 27>1227>12 nên 33>1233>12

Vậy 33>1233>12.
b) Ta có: 35=32.5=4535=32.5=45

7=72=497=72=49

Vì 49>4549>45 nên 7>357>35

Vậy 7>357>35.

c) Ta có: 1351=(13)2.51=5191351=(13)2.51=519

15150=(15)2.150=15025=6=6.99=54915150=(15)2.150=15025=6=6.99=549

Vì 549>519549>519 nên 1351<151501351<15150

Vậy 1351<151501351<15150.

d) Ta có: 126=(12)2.6=64126=(12)2.6=64

=32=3.12=3.12=32=3.12=3.12

Vì 3.12<6123.12<612 nên 12.6<61212.6<612

Vậy 126<612126<612.

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)

\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)

Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)

b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)

\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)

Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)

b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)

Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)

Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)

c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)

Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)

Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)

8 tháng 12 2017

struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }

a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)

\(\left(-2\sqrt{2}\right)^2=8\)

mà 7<8

nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)

b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)

\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)

mà 220<270

nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)

hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)

23 tháng 6 2018

Em mới học lớp 6 thôi để em thử àm xem nó ra sao:

a)<

b)<

c)<

e)<

29 tháng 8 2020

\(a\)

\(\sqrt{11}+\sqrt{19}\)

\(=\)\(\sqrt{11+19}\)

\(=\)\(\sqrt{30}\)

\(=\)\(5,47\)

\(\sqrt{47}\)

\(=6,85\)

\(5,47\)\(< \)\(6,85\)

\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)

\(b\)

\(\sqrt{7}+\sqrt{26}+1\)

\(=\)\(\sqrt{7+26}+1\)

\(=\)\(\sqrt{33}+1\)

\(=\)\(5,74+1\)

\(=\)\(6,74\)

\(\sqrt{63}\)

\(=\)\(7,93\)

\(6,74\)\(< \)\(7,93\)

\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)

Học tốt!!!