K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Ta có:\(2x^2+2xy+4x+y^2+8\)

         \(=x^2+4x+4+x^2+2xy+y^2+4\)

          \(=\left(x+2\right)^2+\left(x+y\right)^2+4\)

                  Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)

                           \(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)

Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y

28 tháng 6 2017

2x^2+2xy+4x+y^2+8

 = x^2+2xy+y^2 +x^2 + 4x+4+4 

=(x+y)^2 + (x+2)^2 +4

Vì (x+y)^2 và (x+2)^2 đều >=0 

Nên (x+y)^2+(x+2)^2+4   >=  4  >0

Vậy.........n.n

18 tháng 10 2020

   4x(x+y)(x+y+z)(x+z) + y^2.z^2

= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2

Đặt x^2 + yz + xz = t

=>  4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)

Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z

13 tháng 8 2015

Ta có x2+y2-4x+2y + 7

= ( x-4x+2) + ( y2+2y+1)+4

= ( x-2) +( y+1)2 +4

Ta có ( x-2)2 >=0 và ( y+1)>=0 

<=> ( x-2) +( y+1)2 +4>=4

vậy  x2+y2-4x+2y + 7>=0

25 tháng 9 2017

to khong biet

5 tháng 11 2014

Bạn hãy viết lại đề bài đi mình trông ngộ ngộ kiểu j đấy

18 tháng 10 2020

Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)

\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)

Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)

Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)

\(=4a^2+4ab+b^2\)

\(=\left(2a+b\right)^2\)

\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)

=> đpcm

18 tháng 10 2020

Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)

18 tháng 10 2020

\(\ge\)bao nhiêu

15 tháng 8 2018

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có:

\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)

15 tháng 8 2018

ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)

không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .

24 tháng 12 2018

kết quả 

https:////h.vn/hoi-dap/question/21757.html

24 tháng 12 2018

\(2x^2-3x+7=2.\left(x^2-\frac{3x}{2}\right)+7=2.\left(x^2-\frac{2.3.x}{4}+\frac{9}{16}\right)+5,875\)

\(=2.\left(x-\frac{3}{4}\right)^2+5,875\ge5,875>0\)(ĐPCM)