cho tam giác ABC vuông tại A, đường cáo AH, AC = 3 cm, HC = 1,8cm. Tính độ dài phân giác AD của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)
AB=3(cm)
AC=4(cm)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=35^2-21^2=784\)
hay AC=28cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
b)\(\text{Gọi DE⊥AB}\)\(\text{→DE//AC}\)
Vì AD là tia phân giác của tam giác ABC
\(\Rightarrow BAD=DAC=\dfrac{1}{2}BAC=45^0\)
\(\Rightarrow EAD=45^0\)
\(\Rightarrow TamgiácAEDvuôngcântạiE\)
\(\rightarrow AD=AE\sqrt{2}\)
Mak AD là tia phân giác
\(\dfrac{\Rightarrow DB}{DC}=\dfrac{AB}{AC}=\dfrac{4}{3}\)
Mak\(\dfrac{DB}{DC}=\dfrac{EB}{AE}\left(địnhlýTalet\right)\)
\(\dfrac{\Rightarrow EB}{AE}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{AE}{AE+EB}=\dfrac{3}{7}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{3}{7}\Rightarrow AE=\dfrac{3}{7}.AB=\dfrac{12}{7}\)
\(\Rightarrow AD=AE.\sqrt{2}=\dfrac{12}{7}.\sqrt{2}=\dfrac{12\sqrt{2}}{7}\approx2,42\)
Xét tam giác ABC vuông tại A có AH đường cao
\(\Rightarrow AC^2=HC.BC\)
\(\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{3^2}{1,8}=5\left(cm\right)\)
\(\Rightarrow HC=BC-HC=5-1,8=3,2\left(cm\right)\)
\(\Rightarrow AH^2=BH.HC\)
\(\Rightarrow AH^2=1,8.3,2=5,76\left(cm\right)\)
\(\Leftrightarrow AH=\sqrt{5,76}=2,4\left(cm\right)\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Leftrightarrow AB=\dfrac{AH.BC}{AC}=\dfrac{2,4.5}{3}=4\left(cm\right)\)
a) Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)
b) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)
Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )
Suy ra tam giác HBA đồng dạng với tam giác HAC
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)
c) Do \(AH^2=BH\times HC\)
\(\Leftrightarrow AH^2=9\times16\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow12^2+16^2=AC^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=\sqrt{400}\)
\(\Leftrightarrow AC=20\left(cm\right)\)
Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)
Do BE là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)
\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)
Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)
Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm
Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=CH*CB
=>CB=3^2/1,8=5cm
AB=căn 5^2-3^2=4cm
Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{90}{2}\right)\)
\(=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12\sqrt{2}}{7}\left(cm\right)\)