cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1930^1930 có tc là 0
1945^1945 có tc là 5
1954^1954 có tc là 6 (mũ chẵn)
1975^1975 có tc là 5
2011^2011 có tc là 1
<=> A có tc là 0+5+6+5-1=15 chia hết cho 5 => A chia hết cho 5
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu a^2 và b^2 đều chia 3 dư 1 => a^2+b^2 chia 3 dư 2
+, Nếu trong 2 số a^2 và b^2 có 1 số chia hết cho 3 và 1 số chia 3 dư 1 => a^2+b^2 chia 3 dư 1
=> để a^2+b^2 chia hết cho 3 thì a^2 và b^2 đều chia hết cho 3
Mà 3 là số nguyên tố nên a và b đều chia hết cho 3
Tk mk nha
a.
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)