Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#include <iostream>
using namespace std;
int main() {
long long a, b, c;
cin >> a >> b >> c;
long long result = ((a % c) + (b % c)) % c;
cout << result << endl;
return 0;
}
Có 20/39>1/2; 18/41<1/2 suy ra 20/39>18/41
22/27>22/29
18/43 = 1- 25/43
14/39 = 1- 25/ 39
mà 25/43< 25/43 suy ra 18/43> 14/39 (vì cùng 1 số mà trừ đi số nhỏ hơn thì sẽ lớn hơn số đó mà lại đem trừ đi số lớn hơn)
Vậy A>B
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)
\(\Rightarrow VT=VP\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)
=> 2a + 5 = 9
=> 2a = 4
=> a = 2
Thay a vào (1) ta có :
\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)
Vậy a = 2 ; b = 5,5 ; c = 4
5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
4(a - b)(b - c) = (c - a)2
=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2
=> 4(-k)(-k) = (-2k)2
=> (-2)2(-k)2 = (-2k)2
=> 22k2 = (2k)2
=> (2k)2 = (2k)2
=> 4(a - b)(b - c) = (c - a)2 (đpcm)
Khi tử số = tử số, mẫu số của phân số nào lớn hơn thì phân số đó bé hơn
1/ a/ ta có: \(\frac{20}{39}>\frac{14}{39}\left(20>14\right)\);
\(\frac{22}{27}>\frac{22}{29}\left(27< 29\right)\);
\(\frac{18}{23}>\frac{18}{41}\left(23< 41\right)\).
=> \(\frac{20}{39}+\frac{22}{27}+\frac{18}{23}>\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b/ \(\left(\frac{3}{8}\right)^3=\left(\frac{3}{8}\right)^3\);
\(\left(\frac{3}{8}\right)^4=\left(\frac{3}{8}\right)^4\);
\(\left(\frac{4}{8}\right)^4>\left(\frac{4}{8}\right)^3\)
=> A > B
Mấy bài còn lại cứ làm tương tự...
a, b = map(int, input().split())
c = int(input())
result = ((a % c) * (b % c)) % c
print(result)