Cho hàm số: y=(\(m^2\)-9)x + 8m [ m là tham số ]
a) Tìm m để đồ thị hàm số đi qua A ( 0 ; 8 )
b) Tìm Điều Kiện để hàm số trên nghịch biến
c) Tìm m để đồ thị hàm số đi qua điểm B nằm trên trục hoành có hoành độ = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
a) \(y=\left(m-1\right)x-3\left(1\right)\)
\(A\left(2;1\right)\in\left(1\right)\Leftrightarrow\left(m-1\right).2-3=1\)
\(\Leftrightarrow2m-2-3=1\)
\(\Leftrightarrow2m=6\)
\(\Leftrightarrow m=3\)
\(\Rightarrow y=2x-3\)
b) Để \(\left(1\right)\) đồng biến
\(\Leftrightarrow m-1>0\)
\(\Leftrightarrow m>1\)
c) \(\left(1\right)\cap\left(Ox\right)=\left(2;0\right)\)
\(\Leftrightarrow\left(m-1\right).2-3=0\)
\(\Leftrightarrow2m-5=0\)
\(\Leftrightarrow m=\dfrac{5}{2}\)
d) \(\left(1\right)\cap\left(Oy\right)=\left(0;1\right)\)
\(\Leftrightarrow\left(m-1\right).0-3=1\)
\(\Leftrightarrow0m=4\left(vô.lý\right)\)
Vậy không có giá trị m nào thỏa mãn đề bài
a: Thay x=1 và y=4 vào (1), ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
Thay m=3 vào y=mx+1, ta được:
\(y=3\cdot x+1=3x+1\)
Vì a=3>0
nên hàm số y=3x+1 đồng biến trên R
b: Để đồ thị hàm số (1) song song với (d) thì
\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)
=>m-1=0
=>m=1
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:
4(m+1)-3=1
=>4m+4-3=1
=>4m+1=1
hay m=0
b: Để hai đường vuông góc thì 5(m+1)=-1
=>m+1=-1/5
hay m=-6/5
c: Thay x=2 vào y=3x-1, ta được:
\(y=3\cdot2-1=5\)
Thay x=2 và y=5 vào (d), ta được:
2(m+1)-3=5
=>2(m+1)=8
=>m+1=4
hay m=3
a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0
\(\Leftrightarrow2m< 1\)
hay \(m< \dfrac{1}{2}\)
\(y=\left(m^2-9\right)x+8m\left(1\right)\)
\(a,A\left(0;8\right)\in y=\left(m^2-9\right)x+8m\)
\(\Rightarrow x=0;y=8\)
Thay \(x=0;y=8\) vào \(\left(1\right)\), ta được : \(8=\left(m^2-9\right).0+8m\Rightarrow8m=8\Rightarrow m=1\)
\(b,\) Hàm số trên nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow m^2-9< 0\Leftrightarrow\left(m-3\right)\left(m+3\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-3< 0\\m+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-3>0\\m+3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 3\\m>-3\end{matrix}\right.\\\left\{{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\end{matrix}\right.\)
\(c,\) Hàm số trên qua \(B\left(x_B;y_B\right)\) có hoành độ = 1 \(\Rightarrow x_B=1,y_B=0\)
\(\Rightarrow0=\left(m^2-9\right).1+8.1\Rightarrow m^2-9+8=0\Rightarrow m^2=1\)
\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=1\end{matrix}\right.\)
Mình xin phép sửa lại câu b của bạn Thư một chút nha:
b: Để hàm số nghịch biến thì m^2-9<0
=>(m-3)(m+3)<0
=>-3<m<3