1)tính
2^100-(1+2+2^2+2^3+....+2^100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21 + 22 + 23 + ... + 2100
Ta có : S = 2 + 22 + 23 + ... + 2100
2S = 2.(2 + 22 + 23 + ... + 2100)
2S = 22 + 23 + ... + 2100 + 2101
2S - S = (22 + 23 + ... + 2100 + 2101) - (2 + 22 + 23 + ... + 2100)
S = 2101 - 2
\(2^1+2^2+2^3+...+2^{100}\)
Ta có : \(S=2+2^2+2^3+....2^{100}\)
: \(2S=2.\left(2+2^2+2^3+....+2^{100}\right)\)
: \(2S=2^2+2^3+.....+2^{100}+2^{101}\)
: \(2S-S=\left(2^2+2^3+....+2^{100}+2^{101}\right)\)\(-\left(2+2^2+2^3+.....+2^{100}\right)\)
: \(S=2^{101}-2\)
`2/5+1/4`
`=8/20+5/20`
`=13/20`
__
`1/3+3/5`
`=5/15+9/15`
`=14/15`
__
`1/2+1/4`
`=2/4+1/4`
`=3/4`
__
`1/8+5/6`
`=6/48+40/48`
`=46/48`
`=23/24`
2/5 + 1/4
= 8/20 + 5/20
= 13/20
1/3 + 3/5
= 5/15 + 9/15
= 14/15
1/2 + 1/4
= 2/4 + 1/4
= 3/4
1/8 + 5/6
= 6/48 + 40/48
= 46/48
= 23/24
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
\(=\left(\dfrac{1}{100}-\dfrac{1}{1^2}\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{10^2}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=0\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)=0\)
Đặt \(A=1+2+2^2+2^3+...+2^{100}\\ 2A=2+2^2+2^3+2^4+...+2^{101}\\ 2A-A=2+2^2+2^3+2^4+...+2^{101}-1-2-2^2-2^3-...-2^{100}\\ A=2^{101}-1\)
\(\Rightarrow2^{100}-\left(2^{100}-1\right)=2^{100}-2^{101}+1\)