K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc B=90-60=30 độ

góc HAB=90-30=60 độ

BC=căn 8^2+12^2=4*căn 13(cm)

HB=AB^2/BC=36/căn 13(cm)

AH=8*12/4*căn 13=24/căn 13(cm)

 

a: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*CB

=>AB^2/AC^2=BH/CH

b:

góc B=90-60=30 độ

góc HAB=90-30=60 độ

BC=căn 8^2+12^2=4*căn 13(cm)

HB=AB^2/BC=36/căn 13(cm)

AH=8*12/4*căn 13=24/căn 13(cm)

 

a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=192/20=9,6cm

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

=>ΔBHA đồng dạng với ΔBAC

a:

BC=35cm 

\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)

b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)

\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)

Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)

17 tháng 9 2023

Ta có: AB < AC nên \(\widehat {ACB} < \widehat {ABC}\) (góc ACB đối diện với cạnh AB; góc ABC đối diện với cạnh AC)

Mà tam giác ADB và tam giác ADC vuông tại D.

Vì tổng hai góc nhọn trong một tam giác vuông bằng 90°.

Mà \(\widehat {ACB} < \widehat {ABC}\).

Suy ra: \(90^\circ  - \widehat {ACB} > 90^0 - \widehat {ABC}\) hay \(\widehat {DAC} > \widehat {DAB}\).

Vậy \(\widehat {HAC} > \widehat {HAB}\) hay \(\widehat {HAB} < \widehat {HAC}\).

Suy ra: A, B, D sai.

Đáp án: C.\(\widehat {HAB} = \widehat {HCB}\).

a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có 

\(\widehat{A}\) chung

Do đó: ΔABC\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{AB}{AH}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AH\cdot AC\)

b) Ta có: \(AB^2=AH\cdot AC\)

\(\Leftrightarrow AH\cdot12=6^2=36\)

hay AH=3(cm)

24 tháng 3 2023

A B C H M

Xét \(\Delta ABC\&\Delta ABH\) ta có:

\(\widehat{A}=\widehat{B}=90^o\left(gt\right)\\ \widehat{B}=\widehat{B}\\\Rightarrow \Delta ABC\&\sim ABH\)

 

24 tháng 3 2023

loading...  

Xét ∆AHB và ∆CBA có:

∠AHB = ∠CAB = 90⁰

∠B chung

⇒ ∆AHB ∽ ∆CBA (g-g)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm