K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

     4 + 4+ 4+ 4+ ... + 423 + 424

=  4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)

=   20 + 42x20 + ... + 422x20

=   20x(1+42+...+422)

Suy ra: A chia hết cho 20

     4 + 4+ 4+ 4+ ... + 423 + 424

=  (4 + 4+ 43) + ... + (422 + 423 + 424)

=   4x(1+4+42) + ... + 422x(1+4+42)

=   4x21 + ... + 422x21

=   (4+...+422)x21

Suy ra: A chia hết cho 21

Vì A chia hết cho 21 , A chia hết cho 20

Suy ra: A chia hết cho 21x20=420

26 tháng 10 2017

 => 21 x 20 = 420

k cho mk nha

13 tháng 7 2017

A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)

  = \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)

\(4.21+.....+4^{22}.21\)

\(21\left(4+...+4^{22}\right)⋮21\)

Vậy A chia hết cho 21

Ai k mik mik k lại nha

13 tháng 7 2017

Lâu r chị k nhớ lắm nhé

CM A chia hết cho 20

A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)

A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)

   = 4(1+4) + 4^3(1+4) +...+4^23(1+4)

   = (1+4)(4+4^3+4^5+...+4^23)

   =5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)

Mà UCLN(4,5)=1 (3)

Vậy A chia hết cho 4.5 =20

CM A chia hết cho 21

A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)

   = 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)

   = (1+4+4^2)(4+4^4+...+4^22)

   = 21(4+4^4+...+4^22) chia hết cho 21

Vậy A chia hết cho 24.

Chúc e học giỏi!

12 tháng 8 2019

A=4+4^2+4^3+...+4^24

A=(4 + 4^2)+(4^3 + 4^4)+...+(4^23 + 4^24)

A=20.(1+4^4+...+4^24)chia hết cho 20

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$

$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$

$=(4+4^2)(1+4^2+...+4^{22})$

$=20(1+4^2+...+4^{22})\vdots 20$ 

----------------------------

$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$

$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$

$=(1+4+4^2)(4+4^4+...+4^{22})$

$=21(4+4^4+....+4^{22})\vdots 21$

----------------------

Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$

13 tháng 7 2016

a) C = 1 + 3 + 32 + 33 + ... + 311

    C = 30 + 3 + 32 + 33 + ... + 311

    C = ( 30 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )

    C = ( 30 + 3 + 32 ) + 33 . ( 30 + 3 + 32 ) + ... + 39 . ( 30 + 3 + 32 )

    C = 13 + 33 . 13 + ... + 39 . 13

    C = 13 . ( 1 + 33 + ... + 39 ) \(⋮\) 13 ( đpcm )

b) C = 1 + 3 + 32 + 33 + ... + 311

    C = 30 + 3 + 32 + 33 + ... + 311

    C = ( 30 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )

   C = ( 30 + 3 + 32 + 33 ) + 34 . ( 30 + 3 + 32 + 33 ) + 38 . ( 30 + 3 + 32 + 33 )

   C = 40 + 34 . 40 + 38 . 40

   C = 40 . ( 1 + 34 + 38 ) \(⋮\) 40 ( đpcm )

c) A = 4 + 42 + 43 + ... + 423 + 424

    A  = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 423 + 424 )

    A = ( 4 + 42 ) + 42 . ( 4 + 42 ) + ... + 422 . ( 4 + 42 )

    A = 20 + 42 . 20 + ... + 422 . 20

    A = 20 . ( 1 + 42 + ... + 422 ) \(⋮\) 20 ( đpcm )

d) A = 4 + 42 + 43 + ...+ 423 + 424

   A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + .... + ( 422 + 423 + 424 )

   A = ( 4 + 42 + 43 ) + 43 . ( 4 + 42 + 43 ) + ... + 421 . ( 4 + 42 + 43 )

  A = 84 + 43 . 84 + ... + 421 . 84

  A = 84 . ( 1 + 43 + ... + 421 ) 

Vì 81 \(⋮\) 9

=> A = 84 . ( 1 +43 + ... + 421 ) \(⋮\) 21 ( đpcm )

e) A = 4 + 42 + 43 + ... + 423 + 424

   A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ... + ( 417 + 418 + 419 + 421 + 422 + 423 + 424 )

   A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ...+ 416 . ( 4 + 42 + 43 + 44 + 45 + 46 )

    A = 5460 + ... + 416 . 5460

    A = 5460 . ( 1 + ... + 416 )

Vì 5460 \(⋮\) 420

=> A = 5460 . ( 1 + ... + 416 ) \(⋮\) 420 ( đpcm )

15 tháng 1 2017

Giải:

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42) + (43 + 44) + ... + (423 + 424)

A = 1 . (4 + 42) + 42 . (4 + 42) + ... + 422 . (4 + 42)

A = 1 . 20 + 42 . 20 + ... + 422 . 20

A = 20 . (1 + 42 + ... + 422)

Vì 20 \(⋮\)20 nên suy ra 20 . (1 + 42 + ... + 422) \(⋮\)20

=> A \(⋮\)20

Vậy A \(⋮\)20

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (422 + 423 + 424)

A = 4 . (1 + 4 + 42) + 44 . (1 + 4 + 42) + ... + 422 . (1 + 4 + 42)

A = 4 . 21 + 44 . 21 + ... + 422 . 21

A = 21 . (4 + 44 + ... + 422)

Vì 21\(⋮\)21 nên suy ra 21 . (4 + 44 + ... + 422) \(⋮\)21

=> A \(⋮\)21

Vậy A \(⋮\)21

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42 + 43 + 44 + 45 + 46) + (47 + 48 + 49 + 410 + 411 + 412) + ... + (419 + 420 + 421 + 422 + 423 + 424)

A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + 46 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 418 . (4 + 42 + 43 + 44 + 45 + 46)

A = 1 . 5460 + 46 . 5460 + ... + 418 . 5460

A = 5460 . (1 + 46 + ... + 418)

Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + 46 + ... + 418) \(⋮\)420

=> A \(⋮\)420

Vậy A \(⋮\)420.

Chúc bạn học tốt!

30 tháng 10 2016

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

11 tháng 11 2016

Có. T= 41+42+.......+423+424

   41T=42+43+........+424+425

Ta lấy 41T-T, ta được:

41T-T=425-41

     3T=425-41

       T=(425-41):3

Vậy T chia hết cho 3

nhớ k nhé

11 tháng 11 2016

41+42+...+423+424 chia hết cho 21 => 41+42+...+423+424 chia hết cho 3