1. .\(4+4^2+4^3+...+4^{23}+4^{24}\)
CMR : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết 420
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)
= \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)
= \(4.21+.....+4^{22}.21\)
= \(21\left(4+...+4^{22}\right)⋮21\)
Vậy A chia hết cho 21
Ai k mik mik k lại nha
Lâu r chị k nhớ lắm nhé
CM A chia hết cho 20
A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
= 4(1+4) + 4^3(1+4) +...+4^23(1+4)
= (1+4)(4+4^3+4^5+...+4^23)
=5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)
Mà UCLN(4,5)=1 (3)
Vậy A chia hết cho 4.5 =20
CM A chia hết cho 21
A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)
= 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)
= (1+4+4^2)(4+4^4+...+4^22)
= 21(4+4^4+...+4^22) chia hết cho 21
Vậy A chia hết cho 24.
Chúc e học giỏi!
A=4+4^2+4^3+...+4^24
A=(4 + 4^2)+(4^3 + 4^4)+...+(4^23 + 4^24)
A=20.(1+4^4+...+4^24)chia hết cho 20
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
a) C = 1 + 3 + 32 + 33 + ... + 311
C = 30 + 3 + 32 + 33 + ... + 311
C = ( 30 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )
C = ( 30 + 3 + 32 ) + 33 . ( 30 + 3 + 32 ) + ... + 39 . ( 30 + 3 + 32 )
C = 13 + 33 . 13 + ... + 39 . 13
C = 13 . ( 1 + 33 + ... + 39 ) \(⋮\) 13 ( đpcm )
b) C = 1 + 3 + 32 + 33 + ... + 311
C = 30 + 3 + 32 + 33 + ... + 311
C = ( 30 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )
C = ( 30 + 3 + 32 + 33 ) + 34 . ( 30 + 3 + 32 + 33 ) + 38 . ( 30 + 3 + 32 + 33 )
C = 40 + 34 . 40 + 38 . 40
C = 40 . ( 1 + 34 + 38 ) \(⋮\) 40 ( đpcm )
c) A = 4 + 42 + 43 + ... + 423 + 424
A = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 423 + 424 )
A = ( 4 + 42 ) + 42 . ( 4 + 42 ) + ... + 422 . ( 4 + 42 )
A = 20 + 42 . 20 + ... + 422 . 20
A = 20 . ( 1 + 42 + ... + 422 ) \(⋮\) 20 ( đpcm )
d) A = 4 + 42 + 43 + ...+ 423 + 424
A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + .... + ( 422 + 423 + 424 )
A = ( 4 + 42 + 43 ) + 43 . ( 4 + 42 + 43 ) + ... + 421 . ( 4 + 42 + 43 )
A = 84 + 43 . 84 + ... + 421 . 84
A = 84 . ( 1 + 43 + ... + 421 )
Vì 81 \(⋮\) 9
=> A = 84 . ( 1 +43 + ... + 421 ) \(⋮\) 21 ( đpcm )
e) A = 4 + 42 + 43 + ... + 423 + 424
A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ... + ( 417 + 418 + 419 + 421 + 422 + 423 + 424 )
A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ...+ 416 . ( 4 + 42 + 43 + 44 + 45 + 46 )
A = 5460 + ... + 416 . 5460
A = 5460 . ( 1 + ... + 416 )
Vì 5460 \(⋮\) 420
=> A = 5460 . ( 1 + ... + 416 ) \(⋮\) 420 ( đpcm )
Giải:
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42) + (43 + 44) + ... + (423 + 424)
A = 1 . (4 + 42) + 42 . (4 + 42) + ... + 422 . (4 + 42)
A = 1 . 20 + 42 . 20 + ... + 422 . 20
A = 20 . (1 + 42 + ... + 422)
Vì 20 \(⋮\)20 nên suy ra 20 . (1 + 42 + ... + 422) \(⋮\)20
=> A \(⋮\)20
Vậy A \(⋮\)20
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (422 + 423 + 424)
A = 4 . (1 + 4 + 42) + 44 . (1 + 4 + 42) + ... + 422 . (1 + 4 + 42)
A = 4 . 21 + 44 . 21 + ... + 422 . 21
A = 21 . (4 + 44 + ... + 422)
Vì 21\(⋮\)21 nên suy ra 21 . (4 + 44 + ... + 422) \(⋮\)21
=> A \(⋮\)21
Vậy A \(⋮\)21
*A = 4 + 42 + 43 + ... + 423 + 424
A = (4 + 42 + 43 + 44 + 45 + 46) + (47 + 48 + 49 + 410 + 411 + 412) + ... + (419 + 420 + 421 + 422 + 423 + 424)
A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + 46 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 418 . (4 + 42 + 43 + 44 + 45 + 46)
A = 1 . 5460 + 46 . 5460 + ... + 418 . 5460
A = 5460 . (1 + 46 + ... + 418)
Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + 46 + ... + 418) \(⋮\)420
=> A \(⋮\)420
Vậy A \(⋮\)420.
Chúc bạn học tốt!
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Có. T= 41+42+.......+423+424
41T=42+43+........+424+425
Ta lấy 41T-T, ta được:
41T-T=425-41
3T=425-41
T=(425-41):3
Vậy T chia hết cho 3
nhớ k nhé
41+42+...+423+424 chia hết cho 21 => 41+42+...+423+424 chia hết cho 3
4 + 42 + 43 + 44 + ... + 423 + 424
= 4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)
= 20 + 42x20 + ... + 422x20
= 20x(1+42+...+422)
Suy ra: A chia hết cho 20
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Suy ra: A chia hết cho 21
Vì A chia hết cho 21 , A chia hết cho 20
Suy ra: A chia hết cho 21x20=420
=> 21 x 20 = 420
k cho mk nha