K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

A B C M N D E

QUA B KẺ BE SONG SONG VỚI NC

TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO

=> TAM GIÁC AMN CÂN TẠI A

=> GÓC AMN = GÓC ANM

DO BE SONG SONG VỚI AC

=> GÓC BEM = GÓC ANM

MÀ GÓC ANM = GÓC AMN

=> GÓC AMN = GÓC BEM

=> BE = BM

TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)

=> BE = CN

=> BM = CN

TA CÓ AM = AN = X

           BM = CN = Y

TA SẼ CÓ :

X + Y = AB = c

X - Y = AC = b

=> X = AM = \(\frac{b+c}{2}\)

=> Y = bm = \(\frac{c-b}{2}\)

( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào  AB VÀ AC)

22 tháng 6 2017

Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k

Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:

Kẻ BK // AC ( K  thuộc MN)

Đặt H là giao điểm của phân giác trong góc A và MN.

Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)

Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)

Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)

Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM  = BK (2)

Từ (1) và (2) suy ra BM = CN

Ta thấy AM = AB + BM = c + BM

            AN = AC - NC = b - NC

Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c

Vậy \(AM=\frac{b+c}{2}\) 

Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\)  ( Với trường hợp b > c và ngược lại)

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

b: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

c: AC-AB=AE+EC-AD+DB

=2BD