A= 5^2003+5^2002+5^2001 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
52003 + 52002 + 52001 chia hết cho 31
= 52003 + 5 2002 + 52001
= 52001. \(5^2+5^{2001}.5+5^{2001}.1\)
= 52001. (\(5^2+5+1\))
= 52001. 31\(⋮\)31
= Vậy 5 2003 + 52002 + 52001 chia hết cho 31
Ta có:
52003 + 52002 + 52001
= 52001.52 + 52001.5 + 52001
= 52001.(52 + 5 + 1)
= 52001.31
Vì 31 chia hết cho 31 => 52001.31 chia hết cho 31 => 52003 + 52002 + 52001 chia hết cho 31
a) 52003 + 52002 + 52001 chia hết cho 31
= 52001 . 52 + 52001 + 51 + 52001
= 52001 . ( 52 + 5 + 1 )
= 52001 . 31 chia hết cho 31
Bạn coi lại đề đi nhé , vì 439 + 440 + 441 không chia hết cho 28 nên mình không chứng minh được !
Nhưng nếu bạn nào thấy mình làm đúng phần a thì k cho mình nha !
\(5^{2001}+5^{2002}+5^{2003}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31⋮31\)
\(\Rightarrow5^{2001}+5^{2002}+5^{2003}⋮31\left(đpcm\right)\)
2/
A=1+2+2^2+...+2^10
2.A= 2+2^2+...+2^11
=>2A-A = 2^11-1=> A = 2^11 -1=B
Vậy A=B
1)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31
Vì 31 chia hết cho 31nên
52001.31chia hết cho 31 hay 52003+52002+52001 chia hết cho 31
2) A = 1+2+22+......+29+210
=>2A=2+22+23+...+211
=>2A-A=2+22+23+...+211-(1+2+22+...+29+210)
=>A=211-1
Vậy A=B=211-1
A=52003+52002+52001 chia hết cho 31
A=52003+52002+52001=52001(52+5+1)=52001x31⋮31.