cho tam giác abc vuông cân tại a, đường cao ah và m là trung điểm ac.
a) chứng minh hm // ab và hm= ab:2
b) vẽ cn vuông góc với bm tại n. gọi d là giao điểm của hai đường thẳng ab và cn. chứng minh tứ giác admh là hình bình hành
c) chứng minh ad=am
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,tam giác ABC vuông cân tại A nên BAC=900,AB=AC
Dễ CM AMCN là hình bình hành (AM//CN,AC//MN) ,mà MAC(BAC)=900
=>AMCN là hình chữ nhật
b,Dễ CM H là trung điểm BC (M là tr.điểm AB,MH//AC)
CM BMCN là hình bình hành (MB//CN,MB=CN) ,H là tr.điểm BC nên H cũng là tr.điểm MN
CM \(\Delta HAM=\Delta HDN\) (g.c.g)=>AM=DN
Ta có CN+ND=AM+AM=2AM=AB => AB=CD ,mà AB//CD nên ABCD là hình bình hành
hình bình hành ABCD có AB=AC nên là hình thoi
hình thoi ABCD có BAC=900 nên là hình vuông (đpcm)
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
TÌM ĐIỂM KHÁC biệt ????
1.
Câu 1:
a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$
Tương tự: $BD\parallel CH$
Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành
b)
Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
Ta có:
$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$
$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$
$\Rightarrow BO=CO(1)$
$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$
Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)
$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$
Mặt khác:
$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$
Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.
$\Rightarrow OK=\frac{AH}{2}=3$ (cm)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
a: ΔABC vuông cân tại A có AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có CH/CB=CM/CA=1/2
nên HM//AB và HM/AB=CH/CB=1/2
=>HM=1/2AB
c: Xét ΔCDB có
CA,BN là đường cao
CA cắt BN tại M
=>M là trực tâm
=>DM vuông góc BC
=>góc MDB=90-45=45 độ
Xét ΔADM vuông tại A có góc ADM=45 độ
nên ΔADM vuông cân tại A
=>AD=AM