K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

\(\left(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\right)^2\)

\(\le3\left(1-a+1-b+1-c\right)=3.\left(3-1\right)=6\)

\(\Rightarrow\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\le\sqrt{6}\)

12 tháng 12 2017

áp dụng bất đẳng thức phụ gì bạn ơi

7 tháng 10 2017

ta có:

\(A^2=\left(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\right)^2\le\left(a+b+c\right)\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (BĐT Bu-nhi-a)

=>\(A^2\le\sqrt{3}\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\)      (*)

mặt khác ta có: \(a^2+1\ge2a\) (BĐT cauchy ) =>\(\frac{a}{a^2+1}\le\frac{1}{2}\)

tương tự ta có: \(\frac{b}{b^2+1}\le\frac{1}{2}\)    ;    \(\frac{c}{c^2+1}\le\frac{1}{2}\)

=> \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)     (**)  

từ (*),(**) => \(A^2\le\sqrt{3}.\frac{3}{2}=\frac{3\sqrt{3}}{2}\)

=>\(A\le\sqrt{\frac{3\sqrt{3}}{2}}\)

=> GTLN của A là \(\sqrt{\frac{3\sqrt{3}}{2}}\)   <=> a=b=c<\(\frac{\sqrt{3}}{3}\)

8 tháng 10 2017

Ta có:

\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}\)

\(\le\frac{\sqrt[8]{27}a}{\sqrt{4\sqrt[4]{a^2}}}=\frac{\sqrt[8]{27a^6}}{2}\)

\(=\frac{\sqrt{3}}{2}.\sqrt[8]{a^6.\frac{1}{3}}\)

\(\le\frac{\sqrt{3}}{2}.\frac{6a+\frac{2}{\sqrt{3}}}{8}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{\sqrt{b^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6b+\frac{2}{\sqrt{3}}}{8}\left(2\right)\\\frac{c}{\sqrt{c^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6c+\frac{2}{\sqrt{3}}}{8}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) 

\(\Rightarrow A\le\frac{\sqrt{3}}{2}.\left(\frac{6}{8\sqrt{3}}+\frac{6}{8}\left(a+b+c\right)\right)\)

\(\le\frac{\sqrt{3}}{2}.\left(\frac{3}{4\sqrt{3}}+\frac{3\sqrt{3}}{4}\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)        

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

14 tháng 5 2023

bài này khó giúp hộ em với

 

10 tháng 1 2021

Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0

Khi đó:

(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)

=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2

=a+b+2c+2|c|=a+b+2c+2|c|

Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c

Do đó:

(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b

⇒√a+c+√b+c=√a+b

 

10 tháng 1 2021

Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0

Khi đó:

(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)

=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2

=a+b+2c+2|c|=a+b+2c+2|c|

Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c

Do đó:

(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b

⇒√a+c+√b+c=√a+b

 

5 tháng 12 2016

Ta có

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(\Leftrightarrow\frac{2a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+b.\frac{1}{\sqrt{\left(b+a\right)\left(b+c\right)}}+c.\frac{1}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+2b.\frac{1}{\sqrt{\left(a+b\right).4.\left(b+c\right)}}+2c.\frac{1}{\sqrt{\left(a+c\right).4.\left(b+c\right)}}\)

\(\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{4\left(b+c\right)}+\frac{c}{a+c}+\frac{c}{4\left(b+c\right)}\)

\(=1+1+\frac{1}{4}=\frac{9}{4}\)

5 tháng 12 2016

Xem lại đề nhé

20 tháng 3 2019

sử dụng bdt bunhiacopxki có đc ko bn

21 tháng 3 2019

\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)

\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)