cho số thực a thỏa mãn hệ thức a^5 -a^3+a-2=0.cmr
\(\frac{a^{16}+a^{12}+ 7a^8+12a^4+12}{a^{12}+7a^8+7a^4+12}< \sqrt[3]{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\text{ }\Sigma_{cyc}\frac{1}{a+7b}=\Sigma_{cyc}\frac{1}{a+b+b+...+b}\le\Sigma_{cyc}\frac{1}{64}\left(\frac{1}{a}+\frac{7}{b}\right)=\frac{1}{2}\)
2\
a3+4a2-7a-10
= a3-2a2+6a2-12a+5a-10
=a2(a-2) +6a(a-2) +5(a-2)
= (a-2)(a2+6a+5)
= (a-2)(a+1)(a+5)
4\
(a2+a)2+4(a2+a)-12
= (a2+a)2+4(a2+a)+4-16
= (a2+a+2)2-16
= (a2+a+6)(a2+a-2)
5/
(x2+x+1)(x2+x+2)-12
đặt x2+x+1=a
⇒ a(a+1)-12
= a2+a-12
= a2-3a+4a-12
= a(a-3)+4(a-3)
= (a-3)(a+4)
⇒ (x2+x-2)(x2+x+5)
6\
x8+x+1
= x8+x7+x6-x7-x6-x5+x5+x4+x3-x4-x3-x2+x2+x+1
= x6(x2+x+1) - x5(x2+x+1) +x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)
= (x2+x+1)(x6-x5+x3+x2+1)
7\
x10+x5+1
= x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1
= x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x8-x7+x5-x4+x3-x+1)
4. Đặt t= a^2 +a
Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)
5. Đặt t = x^2 +x+1
Ta có: t(t+1) -12
= t^2 +t-12
= (t-3)(t+4)
= ( x^2 +x -2 ) (x^2+x+5)
= (x-1) ( x+2) (x^2+x+5)
6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1
= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)
7. x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1
= (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)
a3 - 7a - 6
= a3 - a - 6a - 6
= a ( a2 - 1 ) - 6 ( a + 1 )
= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )
= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]
= ( a + 1 ) ( a2 - a - 6 )
= ( a + 1 ) ( a2 + 2a - 3a - 6 )
= ( a + 1 ) ( a + 2 ) ( a - 3 )
1.
$a^3-7a-6=a^3-a-(6a+6)=a(a^2-1)-6(a+1)$
$=a(a-1)(a+1)-6(a+1)=(a+1)(a^2-a-6)$
$=(a+1)(a^2+2a-3a-6)$
$=(a+1)[a(a+2)-3(a+2)]=(a+1)(a+2)(a-3)$
2.
\(a^3+4a^2-7a-10=a^3+a^2+(3a^2+3a)-(10a+10)\)
\(=a^2(a+1)+3a(a+1)-10(a+1)=(a+1)(a^2+3a-10)\)
\(=(a+1)[a(a-2)+5(a-2)]=(a+1)(a-2)(a+5)\)
3.
\(a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc\)
\(=a(b^2+c^2+2bc)+b(c^2+a^2+2ac)+c(a^2+b^2+2ab)-4abc\)
\(=ab(a+b)+bc(b+c)+ca(c+a)+2abc\)
\(=ab(a+b+c)+bc(a+b+c)+ac(a+c)\)
\(=(a+b+c)(ab+bc)+ac(a+c)=(ab+b^2+bc)(a+c)+ac(a+c)\)
\(=(a+c)(ab+b^2+bc+ac)=(a+c)(a+b)(b+c)\)