Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB = CD) có AC = BD.
Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng mình rằng:
a) ∆BDE là tam giác cân.
b) ∆ACD = ∆BDC.
c) Hình thang ABCD là hình thang cân.
CÁC BẠN GIẢI BÀI NÀY CÂU a) BẰNG CÁCH XÉT HAI TAM GIÁC GIÚP MK VS NHÉ ! CHỈ CẦN CÂU a) THÔI !!!! GIẢI BẰNG CÁCH XÉT HAI TAM GIÁC SAU ĐÓ SUY RA HAI CẠNH BẰNG NHAU ! GIÚP MK VS!
a, Ta có: BE song song AC ( theo bài ra)
AB song song CE ( E thuộc CD)
nên ABEC là hình bình hành, do đó AC=BE
mà AC = BD
nên BD=BE do đó BDE là tam giác cân
b, Ta có AC song song BE nên ˆBEC=ˆACD
mà ˆBED=ˆBDC ( BDE là tam giác cân )
do đó ˆACD=ˆBDC
Xét tg ACD và tg BDC có : ˆACD=ˆBDC
AC=BD( theo gt )
BC là cạnh chung
nên tg ACD =tg BDC ( c-g-c)
c, Theo chứng minh câu b, ta có: tg ACD= tg BDC
do đó ˆADC=ˆBCD
Vậy ABCD là hình thang cân
lạc yêu cầu r bn cóp mạng ghê đấy