cho tam giác abc vuông tại a có ab = 2a góc b = 60 độ tính ac , bc và đường cao ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)
\(b,\) Sửa: Tính AH,BH,CH
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\); \(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=1/2
=>BC=12cm
AC=căn 12^2-6^2=6*căn 3(cm)
AH=6*6căn 3/12=3*căn 3(cm)
BH=AB^2/BC=3cm
CH=12-3=9cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Ta có : AB = BC x sin C = 10 x sin 600 = \(5\sqrt{3}\) (cm)
AC = \(\sqrt{BC^2-AC^2}=\sqrt{10^2-\left(5\sqrt{3}\right)^2}=5\) (cm)
AH = \(\frac{AB.AC}{BC}=\frac{5.5\sqrt{3}}{10}=\frac{5\sqrt{3}}{2}\) (cm)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
góc B=60 độ
=>góc C=30 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>2a/BC=1/2
=>BC=4a
=>AC=2a*căn 3
AH=AB*AC/BC=2a*2a*căn 3/4a=a*căn 3