Cho \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\) và \(x+y+z=2\)
Tính \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x}=x;\sqrt{y}=y;\sqrt{z}=z\) cho dễ nhìn.
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=2\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(x\left(1+y^2\right)\left(1+z^2\right)+y\left(1+z^2\right)\left(1+x^2\right)+z\left(1+x^2\right)\left(1+y^2\right)\)
\(=x^2y^2z+y^2z^2x+z^2x^2y+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+x+y+z\)
\(=xyz\left(xy+yz+zx\right)+x^2\left(2-x\right)+y^2\left(2-y\right)+z^2\left(2-z\right)+2\)
\(=-2xyz+2\left(x^2+y^2+z^2\right)-\left(x^3+y^3+z^3-3xyz\right)+2\)
\(=-2xyz+6-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=-2xyz+6-2=-2xyz+4\)
Ta lại có:
\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)=x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2+1\)
\(=x^2y^2z^2+\left(xy+yz+zx\right)^2-2xyz\left(xy+yz+zx\right)+3\)
\(=x^2y^2z^2-2xyz+4=\left(xyz-2\right)^2\)
\(\Rightarrow A=\sqrt{\left(xyz-2\right)^2}.\frac{4-2xyz}{\left(xyz-2\right)^2}\)
Tới đây bí :((
Bạn tham khảo tại đây:
Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến
+ \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=4\Rightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
+ \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\)
+ Tương tự : \(y+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\); \(z+1=\left(\sqrt{x}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
+ \(P=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}+\sqrt{z}\right)^2\left(\sqrt{z}+\sqrt{x}\right)^2}\cdot\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)
\(=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=2\)
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
\(\Leftrightarrow x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}=4\)
\(\Leftrightarrow2+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Khi đó ta có : \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow x+1=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)
\(\Leftrightarrow x+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\)
Tương tự : \(y+1=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\);
\(z+1=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
Ta lần lượt xét các biểu thức :
+) \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\sqrt{\left[\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\right]^2}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)
+) \(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
Do đó ta có :
\(P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\cdot\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(P=2\)
Vậy...
Bạn xem lại đề nhé :)
Thay 1 bằng xy + yz + zx được :
\(1+y^2=xy+yz+zx+y^2=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\)
Tương tự : \(1+x^2=\left(x+y\right)\left(x+z\right)\), \(1+z^2=\left(x+z\right)\left(z+y\right)\)
Suy ra \(Q=x\sqrt{\frac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(z+y\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(xy+yz+zx\right)=2\)(vì x,y,z > 0)
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự \(1+y^2=\left(x+y\right)\left(y+z\right)\)
\(1+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào A ta được
\(P=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=2(xy+xz+yz)=2
\(b,VT=VP\)
\(\Leftrightarrow\frac{x}{xy+yz+zx+x^2}+\frac{y}{xy+yz+zx+y^2}+\frac{z}{xy+yz+zx+z^2}\)
\(=\frac{2xyz}{\sqrt{\left(xy+yz+zx+x^2\right)\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}}\)
\(\Leftrightarrow\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{2xyz}{\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)\left(z+x\right)\left(y+z\right)}}\)
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Leftrightarrow xy+xz+xy+yz+xz+yz=2xyz\)
\(\Leftrightarrow2=2xyz\)
\(\Leftrightarrow xyz=1\)
Đù =)))