Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.
a) \(27 + 54x + 36{x^2} + 8{x^3}\).
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3}\\ = {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.3y + 3.\left( {2x} \right).{\left( {3y} \right)^2} - {\left( {3y} \right)^3}\\ = {\left( {2x - 3y} \right)^3}\end{array}\)
\(8{{\rm{x}}^3} - 36{{\rm{x}}^2}y + 54{\rm{x}}{y^2} - 27{y^3} = {\left( {2{\rm{x}}} \right)^3} - 3.\left( {2{\rm{x}}} \right).3y + 3.2{\rm{x}}.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {2{\rm{x}} - 3y} \right)^3}\)
\(\begin{array}{l}{x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\\ = {x^3} + 3.{x^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
a) \({a^3} + 12{{\rm{a}}^2} + 48{\rm{a}} + 64 \\= {a^3} + 3{{\rm{a}}^2}.4 + 3{\rm{a}}{.4^2} + {4^3} \\= {\left( {a + 4} \right)^3}\)
b) \({x^3} - 9{{\rm{x}}^2} + 27{\rm{x}} - 27 \\= {x^3} - 3.{x^2}.3 + 3.x{.3^2} - {3^3} \\= {\left( {x - 3} \right)^3}\)
c) \(8{{\rm{a}}^3} - 12{{\rm{a}}^2}b + 6{\rm{a}}{b^2} - {b^3} \\= {\left( {2{\rm{a}}} \right)^2} - 3.{\left( {2{\rm{a}}} \right)^2}.b + 3.2{\rm{a}}.{b^2} - {b^3} \\= {\left( {2{\rm{a}} - b} \right)^3}\)
d) \(27{{\rm{x}}^3} + 54{{\rm{x}}^2}y + 36{\rm{x}}{y^2} + 8{y^3}\\= {\left( {3{\rm{x}}} \right)^3} + 3.{\left( {3{\rm{x}}} \right)^2}.2y + 3.3{\rm{x}}.{\left( {2y} \right)^2} + {\left( {2y} \right)^3} \\= {\left( {3{\rm{x}} + 2y} \right)^3}\)
Bài 1:
c: \(\left(-5x-y\right)^3=-125x^3-75x^2y-15xy^2-y^3\)
h: \(\left(3y-2x^2\right)^3=27y^3-54y^2x^2+36yx^4-8x^6\)
a) \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)