Cho các số dương thỏa mãn \(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\zx+z+x=15\end{cases}}\)
Tính P = x + y + z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ đã cho tương đương với :
\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)
Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)
Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P
xy+x+y = 3
<=> (xy+x)+(y+1) = 4
<=> (y+1).(x+1) = 4
Tương tự : (y+1).(z+1) = 9 ; (z+1).(x+1) = 16
=> 4.9.16 = [(x+1).(y+1).(z+1)]^2
<=> [(x+1).(y+1).(z+1)]^2 = 576
<=> (x+1).(y+1).(z+1) = -24 hoặc (x+1).(y+1).(z+1) = 24
<=> x+1 = -8/3 ; y+1 = -3/2 ; z+1 = -6 hoặc x+1 = 8/3 ; y+1 = 3/2 ; z+1 = 6
<=> x=-11/3 ; y=-5/2 ; z=-7 hoặc x=5/3 ; y=1/2 ; z=5
<=> x+y+z = -79/6 hoặc x+y+z = 43/6
Vậy ................
P/S : Tham khảo nha
(x+y+z)²=x²+y²+z²+2(xy+yz+zx)
→ x²+y²+z²=(1/2)²-2.(-2)=17/4
(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)
=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz
→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8
(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)
→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2
(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)
→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32
Cộng 1 vào 2 vế của 3 pt ta được:
x+xy+y+1=1+1 <=> (x+1)(y+1)=2
y+yz+z+1=3+1 <=> (y+1)(z+1)=4
z+xz+z+1=7+1 <=> (z+1)(x+1)=8
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1
(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16
(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4
Do x;y;z không âm nên x= 1; y= 0; z= 3
=> M = 1 +02 +32 =10
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3):
\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)
Do x,y,z dương =>(x+1)(y+1)(z+1)=24
từ (1)=>z+1=24:4=6=>z=5
từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)
từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)
\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)