Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)
a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc
b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau.
c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm .
a)
\(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)
b)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\)
c)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\)