Tìm giá trị lớn nhất của biểu thức sau:B= 8-(x - 1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=-x^2-2x+2\)
\(\Rightarrow BMax\Leftrightarrow-x^2-2x+2Max\)
\(\Leftrightarrow-\left(x^2+2x-2\right)Max\)
\(\Leftrightarrow-\left(x^2+2x+1-3\right)Max\)
\(\Leftrightarrow-\left[\left(x+1\right)^2-3\right]Max\)
\(\Leftrightarrow-\left(x+1\right)^2+3Max\)
Vì \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2+3\le3\forall x\)
Dấu = xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(\Rightarrow MaxB=3\Leftrightarrow x=-1\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
Có : A >= 0 + 8 = 8
Dấu "=" xảy ra <=> 1-x=0 <=> x=1
Vậy GTNN của A = 8 <=> x=1
Có : B < = 15 - 0 = 15
Dấu "=" xảy ra <=> x-7=0 <=> x=7
Vậy GTLN của B = 15 <=> x=7
Tk mk nha
a) A=|1-x|+8
=> A-8=|1-x|
=> Để |1-x| có giá trị nhỏ nhất thì A-8=0
=> 1-x =0 => -x=0-1 => -x= -1 => x=1
=> giá trị nhỏ nhất của biểu thức A là:
|1-1|+8=0+8=8
Vậy giá trị nhỏ nhất của biểu thức A là 8
Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
Ta có: \(\left(x-1\right)^2\ge0\forall x=>-\left(x-1\right)^2\le0\forall x=>B=8-\left(x-1\right)^2\le8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy MinB = 8 khi và chỉ khi x=1