K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

Ta có: \(\left(x-1\right)^2\ge0\forall x=>-\left(x-1\right)^2\le0\forall x=>B=8-\left(x-1\right)^2\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy MinB = 8 khi và chỉ khi x=1

20 tháng 1 2017

Ta có: \(B=-x^2-2x+2\)

\(\Rightarrow BMax\Leftrightarrow-x^2-2x+2Max\)

\(\Leftrightarrow-\left(x^2+2x-2\right)Max\)

\(\Leftrightarrow-\left(x^2+2x+1-3\right)Max\)

\(\Leftrightarrow-\left[\left(x+1\right)^2-3\right]Max\)

\(\Leftrightarrow-\left(x+1\right)^2+3Max\)

Vì \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2+3\le3\forall x\)

Dấu = xảy ra \(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

\(\Rightarrow MaxB=3\Leftrightarrow x=-1\)

16 tháng 1 2022

Ta có: \(2\left(x-1\right)^2+3\ge3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow B=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(B_{max}=\dfrac{1}{3}\Leftrightarrow x=1\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2

21 tháng 1 2018

Có : A >= 0 + 8 = 8

Dấu "=" xảy ra <=> 1-x=0 <=> x=1

Vậy GTNN của A = 8 <=> x=1

Có : B < = 15 - 0 = 15

Dấu "=" xảy ra <=> x-7=0 <=> x=7

Vậy GTLN của B = 15 <=> x=7

Tk mk nha

21 tháng 1 2018

a) A=|1-x|+8

=> A-8=|1-x|

=> Để |1-x| có giá trị nhỏ nhất thì A-8=0

=> 1-x =0 => -x=0-1 => -x= -1 => x=1

=> giá trị nhỏ nhất của biểu thức A là:

          |1-1|+8=0+8=8

  Vậy giá trị nhỏ nhất của biểu thức A là 8

30 tháng 1 2018

Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy GTNN của A = -1 <=> x=-3

Tk mk nha

30 tháng 1 2018

tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê 

21 tháng 9 2021

Bài 2:

a) \(A=x^2+6\ge6>0\forall x\in R\)

b) \(B=\left(5-x\right)\left(x+8\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)