Cho bốn điểm \(A,B,C,D\) phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu đường thắng đi qua hai trong bốn điểm đã cho?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a,
Có 6 đường thẳng đi qua hai trong bốn điểm đã cho. Đó là các đường thẳng: AB, AC, AD, BC, BD, CD.
b,
Có 12 tia với gốc là một trong bốn điểm đã cho và đi qua một trong 3 điểm còn lại. Đó là các tia: AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC.
c,
Có 6 đoạn thẳng có hai mút là hai trong bốn điểm đã cho. Đó là các đoạn thẳng: AB,AC,AD,BC,BD,CD.
a: Có \(C^2_5\left(đoạn\right)\)
b: Có 5 đường thẳng đi qua hai điểm bất kì
bài 1:Qua điểm A và mỗi điểm B,C,D có ba đường thằng là AB, AC,AD. Qua điểm B và mỗi điểm C,D có hai đường thẳng là BC,BD (Không qua A). Qua điểm C và D còn lại có một đường thẳng CD (không đi qua A,B).
Chú ý: có thể trình bày ngắn gọn như sau : với 4 điểm A,B,C,D thì có 6 đường thẳng AB,AC,AD,BC,BD,CD
bài 2:Vì 3 điểm M,N,P thẳng hàng nên đường thẳng đi qua cả 3 điểm M,N,P trùng nhau và Q nằm ngoài đường thẳng trên nên kẻ được 3 đường thẳng lần lượt đi qua 3 điểm thẳng hàng.
Vậy ta có 4 đường thẳng: MP,QN,QM,QP(không kể MN, NP)
Cứ 2 điểm tạo thành 1 đoạn thẳng
Có 4 cách chọn điểm thứ nhất
Có 3 cách chọn điểm thứ hai
Số đoạn thẳng được tạo thành là: 4 x 3 = 12
Theo các trên mỗi đoạn thẳng được tính hai lần
Thực tế số đoạn thẳng được tạo là: 12 : 2 = 6 (đoạn thẳng)
kết luận:..
A) với 2 điểm , ta vẽ dc 1 đường thẳng
B) từ 1 điểm ta nối với 2 điểm còn lại, ta vẽ dc 2 dt. Với 3 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3dt
C)từ 1 điểm ta nối với 3 điểm còn lại, ta vẽ dc 3 dt. Với 4 điểm như thế, ta vẽ dc 3.4=12 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 12:2=6 dt
D)từ 1 điểm ta nối với 9 điểm còn lại, ta vẽ dc 9 dt. Với 10 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3
E)từ 1 điểm ta nối với n điểm còn lại, ta vẽ dc n-1 dt. Với n điểm như thế, ta vẽ dc n.(n-1) dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là n.(n-1):2 dt
Có \(C^2_4=6\left(đường\right)\) đi qua 2 điểm trong 4 điểm đã cho