a) Tính tổng 50 số tự nhiên chẵn đầu tiên.
b) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_3} + {u_{28}} = 100\). Tính tổng 30 số hạng đầu tiên của cấp số cộng đó.
c) Cho cấp số cộng \(\left( {{v_n}} \right)\) có \({S_6} = 18\) và \({S_{10}} = 110\). Tính \({S_{20}}\).
a, Ta có thể sắp xếp 50 số tự nhiên chẵn đầu tiên thành cấp số cộng có số hạng đầu \(u_1=0\) và công sai \(d=2\)
b, Giả sử cấp số cộng có số hạng đầu \(u_1\) và công sai d.
Ta có:
\(u_3+u_{28}=\left(u_1+2d\right)+\left(u_1+27d\right)=2u_1+29d\Leftrightarrow2u_1+29d=100\\ \Rightarrow S_{30}=\dfrac{30\cdot\left[2u_1+29d\right]}{2}=\dfrac{30\cdot100}{2}=1500\)
c, Giả sử cấp số cộng có số hạng đầu \(v_1\) và công sai \(d\)
Ta có:
\(S_6=18\Leftrightarrow\dfrac{6\cdot\left[2v_1+5d\right]}{2}=18\Leftrightarrow2v_1+5d=6\left(1\right)\\ S_{10}=110\Leftrightarrow\dfrac{10\cdot\left[2v_1+9d\right]}{2}=110\Leftrightarrow2v_1+9d=22\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2v_1+5d=6\\2v_1+9d=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v_1=-7\\d=4\end{matrix}\right.\)
\(\Rightarrow S_{20}=\dfrac{20\cdot\left[2v_1+19d\right]}{2}=\dfrac{20\cdot\left[2\cdot\left(-7\right)+19\cdot4\right]}{2}=620\)