Tính \(\sin \left( {\alpha + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha = - \frac{5}{{13}},\pi < \alpha < \frac{{3\pi }}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi + \alpha } \right) = \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2} + \alpha } \right) - \cos \left( {12\pi + \pi + \alpha } \right) = \sin \left( {-8\pi + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha \right) = \cos \left( \alpha \right) + \cos \left( \alpha \right) = 2\cos \left( \alpha \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)
Ta có:
a) \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3 + 3\sqrt 2 }}{6}\)
b) \(\cos \left( {\alpha + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} = - \frac{{3 + \sqrt 6 }}{6}\)
c) \(\sin \left( {\alpha - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)
d) \(\cos \left( {\alpha - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)
\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)
\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)
Công thức hạ bậc
\(sin^2a=\frac{1}{2}-\frac{1}{2}cos2a\)
Julian Edward
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(P=1-\left[1-cos\left(\frac{\pi}{2}-2a\right)\right]+sin2a-cos2a-6cota\)
\(=sin2a+sin2a-cos2a-6cota\)
\(=2sin2a-cos2a-6cota\)
\(=4sina.cosa-\left(cos^2a-sin^2a\right)-\frac{6cosa}{sina}\) (thay số và bấm máy)
\(sin\left(a-\frac{\pi}{3}\right)cos\left(\frac{\pi}{4}-a\right)+cos\left(a-\frac{\pi}{3}\right)sin\left(\frac{\pi}{4}-a\right)\)
\(=sin\left(a-\frac{\pi}{3}+\frac{\pi}{4}-a\right)=sin\left(\frac{\pi}{4}-\frac{\pi}{3}\right)\)
\(=sin\frac{\pi}{4}cos\frac{\pi}{3}-cos\frac{\pi}{4}sin\frac{\pi}{3}\)
\(=\frac{\sqrt{2}}{2}.\frac{1}{2}-\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}=\frac{\sqrt{2}-\sqrt{6}}{4}\)
\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)
\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)
\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)