Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA’.
a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B‘C.
b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B’C. Tính tỉ số \(\dfrac{KB'}{KC}\)
a) Ta có \(\left( {MNP} \right) \cap \left( {ABC} \right) = MN,\left( {ABC} \right) \cap \left( {ACC'A'} \right) = AC,AC//MN\) (do MN là đường trung bình của tam giác ABC) suy ra giao tuyến của (MNP) và (ACC'A') song song với MN và AC.
Qua P kẻ đường thẳng song song với AC cắt CC' tại H.
PH là giao tuyến của (MNP) và (ACC'A').
Nối H với N cắt B'C tại K.
Vậy K là giao điểm của (MNP) và B'C.
b) Gọi giao điểm BC' và B'C là O.
Ta có ACC'A' là hình bình hành P là trung điểm AA', PH //AC suy ra H là trung điểm CC'.
Xét tam giác CC'B ta có: HN là đường trung bình suy ra CK = OK.
Mà OC = OB' suy ra \(\frac{{KB'}}{{KC}} = 3\).