Giải hệ phương trình:\(\hept{\begin{cases}x^2+y^2=4z-5+2xy\\x^4+y^4=9z-5-2x^2y^2-4z^2\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge\frac{-1}{2}\)
\(x^2-\left(2x+1+2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow x^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}-1\right)\left(x+\sqrt{2x+1}+1\right)=0\)
Vì \(x\ge\frac{-1}{2}\) nên \(x+\sqrt{2x+1}+1>0\)
\(\Rightarrow x-\sqrt{2x+1}-1=0\)
\(\Leftrightarrow x-1=\sqrt{2x+1}\)
\(\Rightarrow x^2-4x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Thử lại chỉ có x = 4 thỏa mãn
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
Từ pt đầu: \(4z-5=\left(x-y\right)^2\ge0\Rightarrow z\ge\frac{5}{4}\) (1)
Từ pt sau: \(-4z^2+9z-5=\left(x^2+y^2\right)^2\ge0\)
\(\Rightarrow\left(z-1\right)\left(4z-5\right)\le0\Rightarrow1\le z\le\frac{5}{4}\) (2)
Từ (1) và (2) suy ra \(z=\frac{5}{4}\)
Thế vào pt ban đầu được: \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x^2+y^2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=0\)
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
Rõ ràng \(x=y=z=0\) là nghiệm của hệ
Với \(xyz\ne0\), Ta có
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)
\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)
Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)
Từ pt thứ nhất của hệ suy ra
\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)
Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)^2=-4z^2+9z-5\\\left(x-y\right)^2=4z-5\end{cases}}\)ta dễ thấy để hai phương trình có ng thì vế phải của 2 phương trình phải dương nên có hệ điều kiện :
\(\Rightarrow\hept{\begin{cases}-4z^2+9z-5\ge0\\4z-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4z-5\right)\left(1-z\right)\ge0\\z\ge\frac{5}{4}\end{cases}}\)
Ta thế \(Z=\frac{5}{4}\)vào ta có hệ \(\hept{\begin{cases}\left(x^2+y^2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=0\\x-y=0\end{cases}\Leftrightarrow x=y=0}\)
Kết luận nghiệm \(\left(x,y,z\right)=\left(0;0;\frac{5}{4}\right)\)