Chứng minh rằng biểu thức E có giá trị bằng 1/2
E = 1 x 98 + 2 x 97 + 3 x 96 + .... + 98 x 1 / 1 x 2 + 2 x 3 + 3 x 4 + .... + 98 x 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^{98}+x^{97}+x^{96}+...+x+1}{x^{32}+x^{31}+x^{30}+...+x+1}\\ x=2\\ \Rightarrow A=\dfrac{2^{98}+2^{97}+2^{96}+...+2+1}{2^{32}+2^{31}+2^{30}+...+2+1}\)
Đặt
\(B = 2^{98} + 2^{97} + 2^{96} + ... + 2 + 1 \\ C = 2^{32} + 2^{31} + 2^{30} + ... + 2 + 1\)
\(B=2^{98}+2^{97}+2^{96}+...+2+1\\ =\left(2-1\right)\left(2^{98}+2^{97}+2^{96}+...+2+1\right)\\ =2^{99}-1\\ =\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)\\ C=2^{32}+2^{31}+2^{30}+...+2+1\\ =\left(2-1\right)\left(2^{32}+2^{31}+2^{30}+...+2+1\right)\\ =2^{33}-1\\ A=\dfrac{B}{C}=\dfrac{\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)}{2^{33}-1}=2^{66}+2^{33}+1\)
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
`(x+1)/99+(x+2)/98+(x+3)/97+(x+4)/96=-4`
`=>(x+1)/99+1+(x+2)/98+1+(x+3)/97+1+(x+4)/96+1=-4+4`
`=>(x+100)/99+(x+100)/98+(x+100)/97+(x+100)/96=0`
`=>(x+100)(1/99+1/98+1/97+1/96)=0`
`=>x+100=0` (Vì `1/99+1/98+1/97+1/96\ne0`)
`=>x=-100`
Vậy ...
`#`𝐷𝑎𝑖𝑙𝑧𝑖𝑒𝑙
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\\ \dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}+4=0\\ \left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\\ \dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\\ \left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
mà `1/99+1/98+1/97+1/96 \ne 0`
nên `x+100=0`
`x=-100`
a: Ta có: \(\left(\dfrac{3}{2}x-\dfrac{1}{5}\right)^2\cdot\left(x^2+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\cdot\dfrac{3}{2}=\dfrac{1}{5}\)
hay \(x=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)
b: Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\Leftrightarrow x+100=0\)
hay x=-100
a,
\(\frac{x-1}{4}-\frac{x-2}{3}\le x-\frac{x-3}{4}\\ \Leftrightarrow\frac{3x-3-4x+8}{12}\le\frac{12x-3x+9}{12}\\ \Leftrightarrow5-x\le9x+9\\ \Leftrightarrow9x+x\ge5-9\\ \Leftrightarrow10x\ge-4\\ \Leftrightarrow x\ge-\frac{2}{5}\\ Vậy...\)
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM