K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

ai giúp mình sửa câu d) đc ko ạ ?

 

14 tháng 7 2023

Có câu d rồi đó bạn

14 tháng 7 2023

mấy bạn giúp mình trả lời với vẽ hình cho mình đc ko ạ ?

 

14 tháng 7 2023

a) Xét Δ ABD và Δ ACE ta có :

AB=AC (đề bài)

Góc A chung

Góc AEC = Góc ABD (BD \(\perp\) AC và CE \(\perp\) AB)

⇒ Δ ABD = Δ ACE (góc, cạnh,góc)

b) Ta có : Δ ABD = Δ ACE (cmt)

⇒ AE=AD

⇒ Δ AED cân tại A

d) vì  BD \(\perp\) AC và CE \(\perp\) AB

⇒ Δ ECB và Δ DKC là 2 Δ vuông tại E và D (1)

Ta lại có :BD=EC (Δ ABD = Δ ACE)

mà BD=DK (đề bài)

⇒ EC=DK (2)

AB=AC (Δ ABC cân tại A)

mà AE=AD (cmt) và BE=AB-AE; CD=AC-AD

⇒ CD=BE (3)

Từ (1). (2), (3) ⇒ Δ ECB = Δ DKC (cạnh, góc, cạnh)

Câu c không thấy điểm H đề bài cho bạn xem lại

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔaCE

b: ΔABD=ΔACE

=>AD=AE

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

AD=AE

=>ΔADH=ΔAEH

=>HD=HE

mà AD=AE

nên AH là trung trực của ED

14 tháng 7 2023

bạn ơi mình còn câu d) chưa biết bn giúp mình đc ko 

 

1 tháng 5 2017

a, Xét tg ABD ( D=90) và tg ACE ( E=90)

A; góc chung

AB =AC

tg ABD = tg ACE ( cạnh huyền - góc nhọn )

b, vì tg ABD =tg ACE nên AE = AD ( 2 cạnh tương ứng )      suy ra :  tg AED cân

c, Xét tg AEH ( E = 90 ) và tg ADH ( D = 90 )

 AE = AD ( cm ý b)

AH : cạnh chung 

suy ra : tg AEH = tg ADH ( cạnh góc vuông - cạnh huyền )

 suy ra AH là đường phân giác

Xét tg AED : vì trong tam giac cân, đường phân giác đồng thời là đường trung trực 

suy ra AH là đường trung trực của ED

d, Xét tg  ECB (E=90) và tg  DBC

1 tháng 5 2017

a, xét tam giác abd và tam giác ace có

 góc adb=góc aec =90(gt)

góc a chung

ab=ac (do tam giác abc cân -gt)

suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)

b, có ad=ae (do tam giác abd = tam giác ace-cmt)

suy ra tam giác aed cân tại a

c, có ad=ae (cmt)

suy ra a thuộc đường trung trực của ed

xét tam giác aeh và tam giác adh có

góc aeh = góc adh=90o (gt)

ad=ae (cmt)

ah cạnh huyền chung

suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)

suy ra hd=he

suy ra h thuộc đường trung trực của ed

suy ra ah là đường trung trực của ed

d,xét tam giác bdc và tam giác kdc có 

bd=dk (gt)

góc bdc = góc cdk (=90o-gt)

cd chung

suy ra tam giác bdc = tam giác kdc (c.g.c)

suy ra góc dbc = góc dkc       (1)

có góc bdc= góc abc - góc abd

     góc ecb= góc acb - góc ace

mà góc abc=góc acb (do tam giác abc cân tại a -gt)

      góc abd=góc ace (do tam giác abd=tam giác ace-cmt)

suy ra  góc dbc= góc ecb                 (2)

từ(1)(2) suy ra góc ecb = góc dkc

2 tháng 5 2015

a. Xét tam giác ABD và tam giác ACE có:

-AEC=ADB=90 (gt)

-AB=AC (2 cạnh bên tam giác cân ABC)

-A là góc chung

=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)

b.*Vì tam giác ABD = tam giác ACE (câu a)

=> BH=CH (2 cạnh tương ứng)

*Xét tam giác EHB và tam giác DHC có:

-BEH=CDH=90 (gt)

-BH=CH (CM trên)

-EHB=DHC (đối đỉnh)

=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)

=>EB=DC (2 cạnh tương ứng)

*Ta có: AB=AE+EB

        và AC=AD+DC

mà AB=AC (2 cạnh bên tam giác cân ABC) 

 và EB=DC (CM trên)

=>AE=AD

=> Tam giác ADE cân tại A (đpcm)

c. Vì AE=AD (CM trên)

    và HE=HD (CM trên)

=> AH là đường trung trực của ED (đpcm)

d. *Xét tam giác DKC và tam giác DBC có:

-BDC=KDC=90 (gt)

-BD=KD (gt)

-DC là cạnh chung

=>tam giác DKC = tam giác DBC (c.g.c)

=> DBC=DKC (2 góc tương ứng) (1)

*Vì BH=CH (câu b)

=> tam giác HBC cân tại H

=>DBC=ECB (2 góc ở đáy tam giác cân) (2)

*Từ (1) và (2) => ECB=DKC (đpcm)

11 tháng 4 2016

bạn ơi có 1 chỗ sai sao gt lại có luôn là abd=ace=90 ngay dc đó là vô lí

abd=ace đang chứng minh cơ mà

9 tháng 2 2019

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

              AB=AC( tam giác ABC cân tại A)

              \(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)

b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A

9 tháng 2 2019

A B C E D H I K

Cm: Xét t/giác ABD và t/giác ACE

có góc CEA = góc BDA = 900 (gt)

   AB = AC (gt)

 góc A : chung

=> t/giác ABD = t/giác ACE (ch - gn)

b) Ta có: t/giác ABD = t/giác ACE (cmt)

=> AE = AD (hai cạnh tương ứng)

=> t/giác AED là t/giác cân tại A

c) Gọi I là giao điểm của AH và ED.

Ta có: AE + EB = AB

       AD + DC = AC

và AB = AC (gt); AE = AD (cmt)

=> EB = DC 

Do t/giác ABD = t/giác ACE (cm câu a)

=> góc ABD = góc ACE (hai cạnh tương ứng)

Xét t/giác EHB và t/giác DHC

có góc BEH = góc HDC (gt)

  EB = DC (cmt)

  góc EBH = góc HCD (cmt)

=> t/giác BEH = t/giác DHC (g.c.g)

=> EH = DH (hai cạnh tương ứng)

Xét t/giác AEH và t/giác ADH

có AE = AD (cmt)

 góc AEH = góc ADH (gt)

 EH = DH (cmt)

=> t/giác AEH = t/giác ADH (c.g.c)

=> góc EAH = góc DAH (hai góc tương ứng)

Xét t/giác AEI và t/giác ADI

có góc EAI = góc DAI (cmt)

  AE = AD (cmt)

 góc AEI = góc ADI (vì t/giác AED cân)

=> t/giác AEI = t/giác ADI (g.c.g)

=> EI = HD (hai cạnh tương ứng) (1)

=> góc AIE = góc AID (hai góc tương ứng)

Mà góc AEI + góc AID = 1800 (kề bù)

=> 2.góc AEI = 1800

=> góc AEI = 1800 : 2

=> góc AEI = 900

=> AI \(\perp\)ED (2)

Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED

d) Sửa đề Cm : góc ECB = góc DKC

Ta có: góc BDC + góc KDC = 1800

=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900

Xét t/giác BDC và t/giác KDC

có BD = DK (gt)

 góc BDC = góc KDC = 900 (Cmt)

 DC : chung

=> t/giác BDC = t/giác KDC (c.g.c)

=> góc K = góc DBC (hai góc tương ứng) (3)

Xét t/giác BEC và t/giác CDB

có góc BDC = góc CDB = 900 (gt)

    BC : chung

  góc B = góc C (vì t/giác ABC cân)

=> t/giác BEC = t/giác CDB (ch -gn)

=> góc BDE = góc DBC (hai góc tương ứng) (4)

Từ (3) và (4) suy ra góc ECB = góc DKC