K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2021

\(x>\dfrac{1}{2}\sqrt{1}-\dfrac{\sqrt{2}}{8}>0\)

\(x^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)+\dfrac{1}{32}-\dfrac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\dfrac{1}{8}}\)

\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{8}\left(2x+\dfrac{\sqrt{2}}{4}\right)\)

\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{4}x-\dfrac{1}{16}=\dfrac{\sqrt{2}}{4}\left(1-x\right)\)

\(\Rightarrow x^4=\dfrac{1}{8}\left(x^2-2x+1\right)\)

\(\Rightarrow x^4+x+1=\dfrac{1}{8}\left(x^2-2x+1\right)+x+1=\dfrac{\left(x+3\right)^2}{8}\)

\(\Rightarrow A=x^2+\sqrt{\dfrac{\left(x+3\right)^2}{8}}=\dfrac{\sqrt{2}}{4}\left(1-x\right)+\dfrac{\sqrt{2}}{4}\left(x+3\right)=\sqrt{2}\)

14 tháng 8 2021

Cho em hỏi với ạ, sao dòng thứ 3 lại cho x vào được vậy ạ 

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

a: \(A=5\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-1\)

\(B=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: A=B

=>căn x=-căn x+1

=>căn x=1/2

=>x=1/4

22 tháng 10 2023

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)

14 tháng 5 2023

`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`

   `A=4/[12-4]=1/2`

Với `x > 0,x ne 1` có:

`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`

`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`

`b)B=2/5A`

`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`

`<=>5\sqrt{x}-5=\sqrt{x}`

`<=>\sqrt{x}=5/4`

`<=>x=25/16` (t/m)

28 tháng 10 2021

a) ĐKXĐ: \(x\ge0,x\ne9\)

\(B=\dfrac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

b) \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}=0\left(đk:x\ge0\right)\)\(\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)

loading...  loading...  

18 tháng 12 2021

\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)

\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)