NHỜ CÁC BẠN GIÚP MÌNH VỚI Ạ,MÌNH ĐANG CẦN GẤP, MÌNHCẢM ƠN NHIỀU
Cho a; b là 2 số nguyên cùng tính chẵn lẻ, CMR: ab là hiệu của 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var st:array[1..100]of string;
a,b,c:array[1..100]of real;
i,n:integer;
max:real;
begin
clrscr;
readln(n);
for i:=1 to n do readln(st[i],a[i],b[i],c[i]);
max=(a[1]+b[1]+c[1])/3;
for i:=1 to n do
if (max<(a[i]+b[i]+c[i])/3) then max:=(a[i]+b[i]+c[i])/3;
writeln(max:4:2);
readln;
end.
22.
ĐKXĐ: \(y\ne1\)
\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)
Trừ pt dưới cho trên:
\(\Rightarrow\dfrac{1}{1-y}=-2\)
\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)
Thế vào \(x^2-\dfrac{1}{y-1}=2\)
\(\Rightarrow x^2=4\Rightarrow x=\pm2\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)
b.
ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)
Trừ pt trên cho dưới:
\(\Rightarrow\dfrac{1}{2x+1}=1\)
\(\Rightarrow2x+1=1\)
\(\Rightarrow x=0\)
Thế vào \(y^2-\dfrac{5}{2x+1}=4\)
\(\Rightarrow y^2=9\Rightarrow y=\pm3\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)
Dạng 3:
Bài 1:
a) Số lượng số hạng là:
\(\left(999-1\right):1+1=999\) (số hạng)
Tổng dãy là:
\(A=\left(999+1\right)\cdot999:2=499500\)
b) Số lượng số hạng là:
\(\left(100-7\right):3+1=32\) (số hạng)
Tổng dãy là:
\(S=\left(100+7\right)\cdot32:2=1712\)
Không vì Ánh áng có thể truyền qua tất cả các môi trường trừ khi trong môi trường đó có vật chắn sáng
b: \(\sqrt{8^2+6^2}-\sqrt{16}+\dfrac{1}{2}\sqrt{\dfrac{4}{25}}\)
\(=10-4+\dfrac{1}{2}\cdot\dfrac{2}{5}=6+\dfrac{1}{5}=\dfrac{31}{5}\)
(a+b)2-(a-b)2=4ab=>ab = \(\left(\dfrac{a+b}{2}\right)^2\)-\(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là hiệu 2 số chính phương vì a≡b(mod 2) => a+b và a-b chia hết cho 2 nên \(\left(\dfrac{a+b}{2}\right)^2\) và \(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là 2 số tự nhiên