K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Đặt biểu thức trên là A ta có:

A = \(\frac{1}{3}\)\(\frac{1}{6}\)\(\frac{1}{12}\)\(\frac{1}{24}\)\(\frac{1}{48}\)\(\frac{1}{96}\)

A x 3 = \(1\)\(\frac{1}{2}\)\(\frac{1}{4}\)\(\frac{1}{8}\)\(\frac{1}{16}\)\(\frac{1}{32}\)

A x 3 = \(1\)\(1\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{8}\)\(\frac{1}{8}\)\(\frac{1}{16}\)\(\frac{1}{16}\)\(\frac{1}{32}\)

A x 3 = 2 - \(\frac{1}{32}\)\(\frac{63}{32}\)

A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)

27 tháng 5 2017

bằng 1

17 tháng 4 2017

A = \(\frac{24}{48}\)\(\frac{12}{48}\)\(\frac{8}{48}\)\(\frac{2}{48}\)\(\frac{1}{48}\)

A = \(\frac{24+12+8+2+1}{48}\)\(\frac{47}{48}\)

ai tốt bụng thì tk cho mk nha

17 tháng 4 2017

tui nhìn ko có quy luật j cả

16 tháng 3 2017

:):):):):):):):):):):):):):):):) mình đâu có biết!

18 tháng 3 2017

cái a bằng 1962

cái b bằng 127/192

à quên mình chưa rút gọn phân số đấy đâu bạn ạ

ban rút gọn phân số đấy hộ mình nha

18 tháng 3 2017

bạn giải từng bước ra giúp mình nhé

9 tháng 2 2018

\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)

\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)

\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)

\(B=\frac{3}{4}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)

\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)

\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)

=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)

\(A=\frac{2}{3}-\frac{1}{192}\)

\(A=\frac{127}{192}\)

\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

      \(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)

      \(C=\frac{1990.997}{1994.995}\)

      \(C=\frac{995.2+997}{997.2+995}=1\)

9 tháng 2 2018

\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)

\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)

7 tháng 5 2018

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}\)

\(B=\frac{99}{100}\)

7 tháng 5 2018

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\) 

  \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

  \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

    \(=1-\frac{1}{100}=\frac{99}{100}\)

8 tháng 3 2017

tầm là sai ế mình làm bài này nhưng ko ra kq 

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

30 tháng 1 2022

Bạn xem lại đề