Ai nhanh ai đúng tớ tick cho :))
Tính nhanh :
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{24}\)+\(\frac{1}{48}\)+\(\frac{1}{96}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
cái a bằng 1962
cái b bằng 127/192
à quên mình chưa rút gọn phân số đấy đâu bạn ạ
ban rút gọn phân số đấy hộ mình nha
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}\)
\(B=\frac{99}{100}\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)
\(=\frac{1}{2000}\)
Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)
bằng 1