K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2023

\(a\times2+a:2=5\)

\(a\times2+a\times\dfrac{1}{2}=5\)

\(a\times\left(2+\dfrac{1}{2}\right)=5\)

\(a\times\dfrac{5}{2}=5\)

\(a=5:\dfrac{5}{2}\)

\(a=2\)

Vậy \(a=2\)

\(2,25-\left(5\times a-125:5\right)=0\)

\(2,25-5\times a+25=0\)

\(27,25-5\times a=0\)

\(5\times a=27,25\)

\(a=27,25:5\)

\(a=5,45\)

Vậy a=5,45

5 tháng 7 2023

\(\left(\dfrac{1}{2}+1\right)\times\left(\dfrac{1}{3}+1\right)\times\left(\dfrac{1}{4}+1\right)\times\left(\dfrac{1}{5}+1\right)\times\left(\dfrac{1}{6}+1\right)\)

\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times\dfrac{7}{6}\)

\(=\dfrac{3\times4\times5\times6\times7}{2\times3\times4\times5\times6}\)

\(=\dfrac{7}{2}\)

5 tháng 7 2023

2

1

 

 +1)×( 

3

1

 

 +1)×( 

4

1

 

 +1)×( 

5

1

 

 +1)×( 

6

1

 

 +1)

 

=

3

2

×

4

3

×

5

4

×

6

5

×

7

6

2

3

 

 × 

3

4

 

 × 

4

5

 

 × 

5

6

 

 × 

6

7

 

 

 

=

3

×

4

×

5

×

 

6

×

7

2

×

3

×

4

×

5

×

6

2×3×4×5×6

3×4×5×6×7

 

 

 

=

7

2

2

7

 

17 tháng 10 2017

a) 4x^2 -12x = (2x)^2 - 2.2x.3 + 3^2 - 3^2

= (2x-3)^2 - 3^2

= (2x - 3 -3)(2x-3 +3)

= 2x(2x - 6)

b) x^2 - y^2 -5x +5y = (x^2 - y^2) - (5x -5y)

= (x+y)(x-y) - 5(x-y)

= (x+y - 5)(x-y)

2. 3x(x - 5) -x +5 = 0

=>3x(x - 5) - (x -5) = 0

=> (3x - 1)(x-5) = 0

=>| 3x - 1 =0  => | 3x = 1 => |x = 1/3

    | x - 5 =0         | x = 5        |x= 5

24 tháng 7 2018

a) \(\left(x+5\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\)    hoặc   \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)

Vậy -5 < x < 2

b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc  \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\)   hoặc     \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)

Vậy x > 3/5 hoặc x < -2

24 tháng 7 2018

a ) ( x + 5 )( x - 2 ) < 0 

=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong 

Neu x + 5 duong va x - 2 am thi 

-5 < x < 2 

=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)

Neu x + 5 am va x - 2 duong thi :

x < -5 va x > 2 

Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay

Bài 1: 

a: A=-5,85+41,3-5=41,3-10,85=30,45

b: B=-87,5+87,5+3,8-0,8=3

c: C=9,5-13-5+8,5=18-18=0

12 tháng 8 2017

Bài 3:

b) 5^400 = (5^4)^100 = 625^100

   3^600 = (3^6)^100 = 729^100

Mà  625^100 < 729^100 => 5^400 < 3^600

Vậy...........

k mik nha!

21 tháng 7 2016

a)

\(3x\left(x+\frac{1}{5}\right)=0\)

=>_3x=0

   |_x+1/5=0

=> _x=0

     |_x=-15

b)(x-2)(3+x)=0

=> _x-2=0

     |_ 3+x=0

=> _x=2

     |_x=-3

21 tháng 7 2016

c) x khác -9 và 3

4>x>-9

10 tháng 8 2018

\(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)

\(=\left(3^{60}-3^{57}\right):3^{57}+\left(5^{27}-5^{24}\right):5^{24}\)

\(=3^{57}\left(3^3-1\right):3^{57}+5^{24}\left(5^3-1\right):5^{24}\)

\(=3^3-1+5^3-1\)

\(=27-1+125-1\)

\(=150\)

2 )

\(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

Vậy ...

b )

\(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(\Leftrightarrow2-4x=0\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

c )

\(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(4+x^2\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(L\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...