Cho 2 đa thức
\(A=x^5y^2+7x^2y^4+5xy^3+xy+2\)
\(B=x^2y^4+5xy^3+x^5y^2\)
Tính A+B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`A - B`
`= (x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2) - (x^2y^4 + 5xy^3 + x^5y^2)`
`= x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2 - x^2y^4 - 5xy^3 - x^5y^2`
`= (x^5y^2 - x^5y^2) + (7x^2y^4 - x^2y^4) + (5xy^3 - 5xy^3) + xy + 2`
`= 6x^2y^4 + xy + 2`
bài 1:
a) x(x-2)-5y-(x-2)=(x-5y)(x-2)
b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)
bài 2 bạn tự luyện nhé
Đáp án:
a.3x³−5x²+7xa.3x³−5x²+7x
b.−4x²y−10x²y+2xyb.−4x²y−10x²y+2xy
c.−x³+2x²+29x+20c.−x³+2x²+29x+20
d.2x⁴−3x³+2x²+3x−4d.2x⁴−3x³+2x²+3x−4
e.x²−4y²e.x²−4y²
h.2x²−6x+13h.2x²−6x+13
g.3xy⁴−12y²+2x²yg.3xy⁴−12y²+2x²y
f.−2x²y³+y−3f.−2x²y³+y−3
Giải thích các bước giải:
a.3x.(x²−5x+7)a.3x.(x²−5x+7)
=3x³−5x²+7x=3x³−5x²+7x
b.−2xy.(2x³+5x−1)b.−2xy.(2x³+5x−1)
=−4x⁴y−10xy²+2xy=−4x⁴y−10xy²+2xy
c.(x+4).(−x²+6x+5)c.(x+4).(−x²+6x+5)
=−x³+6x²+5x−4x²+24x+20=−x³+6x²+5x−4x²+24x+20
=−x³+2x²+29x+20=−x³+2x²+29x+20
d.(x²−1).(2x²−3x+4)d.(x²−1).(2x²−3x+4)
=2x⁴−3x³+4x²−2x²+3x−4=2x⁴−3x³+4x²−2x²+3x−4
=2x⁴−3x³+2x2+3x−4=2x⁴−3x³+2x2+3x−4
e.(x+2y).(x−2y)e.(x+2y).(x−2y)
=x²−(2y)²=x²−(2y)²
=x²−4y²=x²−4y²
h.(3x−1)²−7(x²+2)h.(3x−1)²−7(x²+2)
=9x²−6x+1−7x²−14=9x²−6x+1−7x²−14
=2x²−6x+13=2x²−6x+13
g.(6x²g.(6x²y⁵−xy³+4x³y²):2xy−xy³+4x³y²):2xy
=3xy⁴−12y²+2x²y=3xy⁴−12y²+2x²y
f.(−12x³y⁴+6xy²−18xy):6xyf.(−12x³y⁴+6xy²−18xy):6xy
=−2x³y³+y−3
Bài tập 2:
a/ A + (x2 - 2xy + y2) = x2 +2xy + y2
=> A = (x2 + 2xy + y2) - (x2 - 2xy + y2)
=> A = x2 + 2xy + y2 - x2 + 2xy - y2
=> A = (x2 - x2) + (2xy + 2xy) + (y2 - y2)
=> A = 0 + (2 + 2). xy + 0
=> A = 4xy
b/ B - (x2y-3xy2 +5) = 3x2 + 1 + 4x2y
=> B = (3x2 + 1 + 4x2y) + (x2y-3xy2 +5)
=> B = 3x2 + 1 + 4x2y + x2y - 3xy2 + 5
=> B = (1 + 5) + (4x2y - x2y) + 3x2 - 3xy2
=> B = 6 + 3x2y + 3x2 - 3xy2
D - 9x + 2y3 - 7x3y2 - 4x5y + 1 = 0
=> D = 0 + 9x + 2y3 - 7x3y2 - 4x5y + 1
=> D = 9x + 2y3 - 7x3y2 - 4x5y + 1
P.s: Lần sau bạn đăng 1 câu hỏi/ bài đăng thôi nhé! Và nhớ dùng công thức trực quan!
\(B=x^5y^2+\dfrac{1}{2}x^5y^2-6xy+1=\dfrac{3}{2}x^5y^2-6xy+1\)
\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)
\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)
\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)
\(=-4x^2y+3xy^2+5\)
\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)
\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)
\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)
\(=-6x^2y+0,5xy^2\)
\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)
\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)
\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)
\(=10xy^2+-4xy\)
\(=10xy^2-4xy\)
\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)
\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)
\(=-3xy+4y^2\)
\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)
\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)
\(=-1\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
\(A+B\\ =x^5y^2+7x^2y^4+5xy^3+xy+2+x^2y^4+5xy^3+x^5y^2\\ =\left(x^5y^2+x^5y^2\right)+\left(7x^2y^4+x^2y^4\right)+\left(5xy^3+5xy^3\right)+xy+2\\ =2x^5y^2+8x^2y^4+10xy^3+xy+2\)
`@` `\text {Ans}`
`\downarrow`
`A + B`
`= (x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2) + (x^2y^4 + 5xy^3 + x^5y^2)`
`= x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2 + x^2y^4 + 5xy^3 + x^5y^2`
`= (x^5y^2 + x^5y^2) + (7x^2y^4+ x^2y^4) + (5xy^3+ 5xy^3) + xy + 2`
`= 2x^5y^2 + 8x^2y^4 + 10xy^3 + xy + 2`