Cho tam giác ABC có AB = 6,AC = 8 và hai đường trung tuyến BM,CN vuông góc với nhau. Tính độ dài cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)
Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)
Trong tam giác ABN vuông tại A, đường cao AG, ta có:
\(AB^2=BG.BN\) (hệ thức lượng)
\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Tam giác ABN vuông tại A
\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
Áp dụng đl pytago vào tam giác ABC:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)
Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải
Dùng hình bạn Ngọc nhé (khỏe khỏi phải vẽ :)
Xét \(\Delta BOC\)và \(\Delta NBC\)có
\(\widehat{OCB}\)chung
\(\widehat{BOC}=\widehat{NBC}=90\)
\(\Rightarrow\Delta BOC\)đồng dạng \(\Delta NBC\)
\(\Rightarrow\frac{BC}{NC}=\frac{OC}{BC}\Leftrightarrow BC^2=NC.OC\)
\(\Leftrightarrow BC^2=NC.\frac{2}{3}NC=\frac{2NC^2}{3}\)(Vì O là trọng tâm)
\(\Rightarrow NC=\sqrt{\frac{3}{2}}BC=\frac{\sqrt{3}.20132014}{\sqrt{2}}\)
Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm