K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

 Viết các biểu thức sau dưới dạng hiệu chứ ạ?

`e,`

`(x+1)(x-1)`

`= x(x-1) + x - 1`

`= x^2 - x + x - 1`

`= x^2 - 1`

`f,`

`(x-2y)(x+2y)?`

`= x(x+2y) - 2y(x+2y)`

`= x^2 + 2xy - 2xy - 4y^2`

`= x^2 - 4y^2`

`g,`

`(x+y+z)(x-y-z)`

`= x(x-y-z) + y(x-y-z) + z(x-y-z)`

`= x^2 - xy - xz + xy - y^2 - yz + xz - yz - z^2`

`= x^2 - y^2 - z^2 - 2yz`

`h,`

`(x-y+z)(x+y+z)`

`= x(x+y+z) - y(x+y+z) + z(x+y+z)`

`= x^2 + xy + xz - xy - y^2 - yz + xz + yz + z^2`

`= x^2 - y^2 + z^2 + 2xz`

Câu này c xem lại đề.

28 tháng 6 2023

\(\left(2x+3y\right)^2\)

\(=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2\)

\(=4x^2+12xy+9y^2\)

\(\left(0,01+xy\right)^2\)

\(=\left(0,01\right)^2+2\cdot0,01\cdot xy+\left(xy\right)^2\)

\(=0,0001+0,02xy+x^2y^2\)

31 tháng 1 2016

mấy bài dạng vi-ét này cậu lấy ở đâu vậy

31 tháng 1 2016

Toán hay đấy

16 tháng 8 2016

quy đồng H lên rồi rút gọn

sau ko rút gọn xong thì tìm x nguyên khi H=6

17 tháng 8 2016

bạn giải rõ ra giúp mình với 

Mình ngu lắm khocroi

4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

22 tháng 7 2023

a) \(\left(3x-5\right)\left(3x+5\right)\)

\(=\left(3x\right)^2-5^2\)

\(=9x^2-25\)

b) \(\left(x-2y\right)\left(x+2y\right)\)

\(=x^2-\left(2y\right)^2\)

\(=x^2-4y^2\)

c) \(\left(-x-\dfrac{1}{2}y\right)\left(-x+\dfrac{1}{2}y\right)\)

\(=\left(-x\right)^2-\left(\dfrac{1}{2}y\right)^2\)

\(=x^2-\dfrac{1}{4}y^2\)

`a, (3x-5)(3x+5) = 9x^2 - 25`

`b, (x-2y)(x+2y) = x^2 -4y^2`

`c, (-x-1/2y)(-x+1/2y) = x^2 - 1/4y^2`

6 tháng 10 2020

1.\(=x^3+8y^3-x^3+8y^3+2y^3=18y^3\)

2. \(=x^3-3x^2+3x-1+1-x^3+3\left(9-x^2\right)\)

\(=-3x^2+3x+27-3x^2=3\left(x+9\right)\)

Ko chắc lém :))))

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix} 5a+3b=8\\ 20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 20a+12b=32\\ 20a-7b=-6\end{matrix}\right.\)

\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)

Ta có:

\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)

\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)

Kéo theo $x=3$

Vậy $(x,y)=(3,1)$