\(\dfrac{8^{14}}{4^4.64^5}\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}\)
\(\left(\dfrac{3}{10}\right)^4.\left(0,3\right)^5.\left(\dfrac{10}{3}\right)^{10}\)
\(\dfrac{\left(4^3\right)^2.9^4}{6^7.8^2}\)
\(\dfrac{4^8.9^4}{6^6.8^3}\)
\(3^6.\left(\dfrac{1}{3}\right)^6.81^2.\dfrac{1}{27^2}\) TÍNH
\(\dfrac{8^{14}}{4^4.64^5}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^4.\left(2^5\right)^5}=\dfrac{2^{42}}{2^8.2^{25}}=2^{42-\left(8+25\right)}=2^9\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}=\dfrac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}=\dfrac{3^{20}.3^{21}}{3^{28}.3^{15}}=\dfrac{3^{20+21}}{3^{28+15}}=\dfrac{3^{41}}{3^{41}.3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)