giúp mình với mình tick đúng và theo dõi cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`9,`
`a, 5/6+1/6 \div 4/3`
`= 5/6+1/8`
`= 23/24`
`b,`
`15/4*(-2/3+3/4)+15/4*(-1/3+1/4)`
`= 15/4*[(-2/3+3/4)+(-1/3+1/4)]`
`= 15/4*[(-2/3)+3/4-1/3+1/4]`
`= 15/4*[(-2/3-1/3)+(3/4+1/4)]`
`= 15/4*(-1+1)`
`= 15/4*0=0`
`10,`
`a, 35 - 3(x-30)=20`
`35- 3x-90=20`
`35+90-3x=20`
`125-3x=20`
`3x=125-20`
`3x=105`
`x=105 \div 3`
`x=35`
`b,`
`|2x-1/2|=3/2`
`=>`\(\left[{}\begin{matrix}2x-\dfrac{1}{2}=\dfrac{3}{2}\\2x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=\dfrac{3}{2}+\dfrac{1}{2}\\2x=-\dfrac{3}{2}+\dfrac{1}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=2\\2x=-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a: Xét ΔABE vuông tai A và ΔHBE vuông tại H có
BE chung
gócABE=gócHBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>BE là trung trực của AH
d.
$(\frac{x}{2}-y)^3=(\frac{x}{2})^3-3(\frac{x}{2})^2y+3.\frac{x}{2}y^2-y^3$
$=\frac{x^3}{8}-\frac{3x^2y}{4}+\frac{3xy^2}{2}-y^3$
e.
$(\frac{x}{2}+\frac{y}{3})^3=(\frac{x}{2})^3+3(\frac{x}{2})^2\frac{y}{3}+3.\frac{x}{2}(\frac{y}{3})^2+(\frac{y}{3})^3$
$=\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}$
f.
$(\frac{2x}{3}-2y)^3=(\frac{2x}{3})^3-3(\frac{2x}{3})^2.2y+3.\frac{2x}{3}(2y)^2-(2y)^3$
$=\frac{8x^3}{27}-\frac{8x^2y}{3}+8xy^2-8y^3$
g.
$(x+y)^3+(x-y)^3=(x^3+3x^2y+3xy^2+y^3)+(x^3-3x^2y+3xy^2-y^3)$
$=2x^3+6xy^2$
Lời giải:
a.
$(3-y)^3=3^3-3.3^2y+3.3y^2-Y63=27-27y+9y^2-y^3$
b.
$(3x+2y^2)^3=(3x)^3+3.(3x)^2(2y^2)+3.3x(2y^2)^2+(2y^2)^3$
$=8y^6+24xy^4+24x^2y^2+8x^3$
c.
$(x-3y^2)^3=x^3-3x^2(3y^2)+3x(3y^2)^2-(3y^2)^3$
$=x^3-9x^2y^2+27xy^4-27y^6$
\(a,-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(b,8-12x+6x^2-x^3=2^3-3.2^2x+3.2x^2-x^3=\left(2-x\right)^3\)
\(c,x^3-6x^2y+12xy^2-8y^3=x^3-3.2y.x^2+2.\left(2y\right)^2x-\left(2y\right)^3=\left(x-2y\right)^3\)
\(d,8x^3+12x^2+6x+1\\ =\left(2x\right)^3+3.1\left(2x\right)^2+3.2x.1^2+1^3=\left(2x+1\right)^3\)
\(c,x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3=\left(x+\dfrac{1}{3}\right)^3\\ f,x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=x^3+3.x^2.\dfrac{1}{2}=3.x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3=\left(x+\dfrac{1}{2}\right)^3\)
a) (x - 2)³ - x(x + 1)(x - 1) + 6x(x + 3)
= x³ - 6x² + 12x - 8 - x(x² - 1) + 6x² + 18x
= x³ + 30x - 8 - x³ + 8
= 30x
b) (x - 2)(x² - 2x + 4)(x + 2)(x² + 2x + 4)
= [(x - 2)(x² + 2x + 4)][(x + 2)(x² - 2x + 4)]
= (x³ - 2³)(x³ + 2³)
= x⁶ - 2⁶
= x⁶ - 64
c) (2x + y)(4x² - 2xy + y²) - (2x - y)(4x² + 2xy + y²)
= [(2x)³ + y³] - [(2x)³ - y³]
= 8x³ + y³ - 8x³ + y³
= 2y³
d) (x + y)³ - (x - y)³ - 2y³
= x³ + 3x²y + 3xy² + y³ - x³ + 3x²y - 3xy² + y³ - 2y³
= 6x²y
e) (x + y + z)² - 2(x + y + z)(x + y) + (x + y)
= x² + y² + z² + 2xy + 2xz + 2yz - 2x² - 2xy - 2xy - 2y² - 2xz - 2yz + x + y
= -x² - y² + z² + x + y
a: =x^3-6x^2+12x-8+6x^2-18x-x(x^2-1)
=x^3-6x-8-x^3+x
=-5x-8
b: =(x-2)(x^2+2x+4)(x+2)(x^2-2x+4)
=(x^3-8)(x^3+8)=x^6-64
c: =8x^3+y^3-8x^3+y^3=2y^3
d: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
e: =(x+y+z)(x+y+z-2x-2y)+(x+y)
=(x+y+z)(-x-y+z)+(x+y)
=z^2-(x+y)^2+(x+y)
=z^2-x^2-2xy-y^2+x+y
\(a,x=\dfrac{1}{2};y=-100\)
\(\Rightarrow A=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow A=100\)
\(b,x=-1\)
\(\Rightarrow B=\left[\left(-1\right)^2-5\right]\left(-1+3\right)+\left(-1+4\right)\left[-1-\left(-1\right)^2\right]\)
\(\Rightarrow B=-14\)
\(c,x=-2\)
\(\Rightarrow C=-6\left(5.4-2\right)-5.4\left(7-6\right)-2,5\left(2-14.4\right)\)
\(\Rightarrow C=7\)
\(d,\left|x\right|=2\)
\(TH_1:x\ge0\)
\(D=\left(3.2+5\right)\left(2.2-1\right)+\left(4.2-1\right)\left(3.2+2\right)=89\)
\(TH_2:x< 0\)
\(D=\left(-6+5\right)\left(-4-1\right)+\left(-8-1\right)\left(-6+2\right)=41\)