Cho tam giác ABC các đường cao BD,CE.
a) CM 4 điểm B,E,C,D cùng thuộc 1 đường tròn.
b) CM DE<BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
a: Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
hay BE\(\perp\)AC
Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
hay CD\(\perp\)AB
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó:ΔBEC vuông tại E
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn
a) Gọi O là trung điểm của BC
Theo tính chất trung tuyến ứng với cạnh huyền ta có:
\(ED=\dfrac{1}{2}BC,DO=\dfrac{1}{2}BC\)
\(\Rightarrow OE=OD=OB=OC\left(=\dfrac{1}{2}BC\right)\)
Do đó 4 điểm B, E, C, D cùng thuộc đường tròn O đường kính BC
b) Xét đường \(\left(O;\dfrac{BC}{2}\right)\), BC là đường kính và DE là dây không qua tâm nên:
\(DE< BC\)
a.
Vì 2 tam giác vuông BEC và BDC có chung cạnh huyền BC nên 2 đỉnh góc vuông D và E nằm trên đường tròn đường kính BC.
Vậy 4 điểm B, E, D, C cùng thuộc 1 đường tròn.
b.
Trong đường tròn đường kính BC, DE là một dây không đi qua tâm. Vậy DE < BC (tính chất độ dài đường kính và dây cung)