Cho a,b,c >0, a.b.c =1. CMr (a-1)(b-1)(c-1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = \(\overline{\frac{\overline{bc}+\overline{ac}+\overline{ac}}{\overline{abc}}}\) = ab + bc + ca
=> a + b + c = ab + bc + ca
=> a + b + c - ab - bc - ca = 0
=> a + b + c - ab - bc - ac + abc - 1 = 0
=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
=> - a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
=> (b - 1)(- a + 1 - c + ac) = 0
=> (b - 1)[( - a + 1) + (ac - c)] = 0
=> (b - 1)[ - (a - 1) + c(a - 1)] = 0
=> (a - 1)(b - 1)(c - 1) = 0
=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
=> a = 1 hoặc b = 1 hoặc c = 1
Vậy (a - 1)(b - 1)(c - 1) > 1
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(\Leftrightarrow abc-ac-bc+c-ab+a+b-1>0\)
\(\Leftrightarrow-ab-bc-ab+a+b+c>0\)
\(\Leftrightarrow a+b+c>ab+ac+bc\)
\(\Leftrightarrow a+b+c>\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (thỏa mãn đề bài)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Lớp 9 chưa học cauchy thì làm cách này nha :v
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)
\(=1+\dfrac{b}{a}+\dfrac{c}{a}+1+\dfrac{a}{b}+\dfrac{c}{b}+1+\dfrac{a}{c}+\dfrac{b}{c}\)
\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge3+2+2+2=9\)
\(-->đpcm\) \("="\) khi \(a=b=c=\dfrac{1}{3}\)
áp dụng cauchy-schwarz dạng engel ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\left(đpcm\right)\)
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)