Cho a,b,c\(\ge\)0 và \(a^2+b^2+c^2=1.\)CMR:\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
Cho mk k nhé!
4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13
1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)
Áp dụng BĐT Bunhiacopxki, ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)
\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\)
\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
ta có \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)
đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)
áp dụng bất đẳng thức bunhiacopxki ta có
\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow H\ge\frac{1}{a+b+c}\)
hay \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bdt Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng BĐT Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
Vì a, b, c > 0
Ta có \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(VT=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{\left(1+1+1\right)^2}{3+\left(ab+bc+ca\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=c\\\frac{1}{1+ab}=\frac{1}{1+bc}=\frac{1}{1+ca}\end{cases}}\) \(\Leftrightarrow\) \(a=b=c\)
Chắc chắn là \(a^2+b^2+c^2=3\) rồi, thử \(a=b=c=\frac{1}{\sqrt{3}}\) là rõ
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\)
Ta có BĐT cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}\)
\(\Rightarrow VT\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}=\frac{9}{6}=\frac{3}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c=1\)
\(a^2+b^2+c^2=1\) hay \(a^2+b^2+c^2=3\)