Giải giúp mình hết phần tự luận với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
$\frac{20}{\sqrt{5}}=\frac{20\sqrt{5}}{5}=4\sqrt{5}$
Câu 6:
\(\frac{3}{\sqrt{5}+\sqrt{2}}+\frac{3}{\sqrt{5}-\sqrt{2}}=3.\frac{\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}=3.\frac{2\sqrt{5}}{5-2}=2\sqrt{5}\)
Câu 7:
1. ĐKXĐ: $x\neq 1; x\geq 0$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+1}+1\right]:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}-1\right]=(\sqrt{x}+1):(\sqrt{x}-1)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
2.
\(A< 1\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \sqrt{x}-1<0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $0\leq x< 1$
Câu1:1A,2C,3A,4D,5C,6D7A,8B
Câu 2
1 chính
2 tổng hợp
Câu 3:cải tạo đất người ta thường dùng biện:cày sâu,bừa kĩ,kết hợp bón phân hữu cơ. Làm ruộng bậc thang. Trồng xen cây nông nghiệp giữa các băng cây phân xanh. Cày nông,bừa sục,giữ nước liên tục,thay nước thường xuyên. Bón vôi.
Câu 4: trả lời:làm ô nhiễm môi trường,cạn kiệt tài nguyên,...
Câu 5: công việc làm đất gồm: cày đất,bừa và đập đất,lên luống.
Tác dụng: làm đất tơi xốp,thoáng,vùi lấp cỏ dại,...(cày đất). Thu gom cỏ dại,đất tơi xốp,tạo điều kiện giữ ẩm,...(bừa và đập đất). Chống úng,tạo lớp đất canh tác dày,...(lên luống)
Trong SGK công nghệ 7 có mà bạn. Kiểm tra lại nha!😅😇😇
1. Đề lỗi
2.
Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{1^2+\left(-1\right)^2-\left(-7\right)}=3\)
a.
\(d\left(I;D\right)=\dfrac{\left|1-1-4\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}< R\)
\(\Rightarrow D\) cắt (C) tại 2 điểm phân biệt
b.
Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH=d\left(I;D\right)=2\sqrt{2}\)
ÁP dụng định lý Pitago trong tam giác vuông IHM:
\(HM=\sqrt{IM^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{9-8}=1\)
\(\Rightarrow MN=2MH=2\)
\(S_{IMN}=\dfrac{1}{2}IH.MN=2\sqrt{2}\)
3.
Đường tròn (C) tâm \(I\left(2;3\right)\) bán kính \(R=\sqrt{2}\)
Đường còn (C') tâm \(I'\left(1;2\right)\) bán kính \(R'=2\sqrt{2}\)
Gọi tiếp tuyến chung của (C) và (C') là (d) có pt: \(ax+by+c=0\) với \(a^2+b^2\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}d\left(I;\left(d\right)\right)=R\\d\left(I';\left(d\right)\right)=R'\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\left(1\right)\\\dfrac{\left|a+2b+c\right|}{\sqrt{a^2+b^2}}=2\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left|a+2b+c\right|=2\left|2a+3b+c\right|\)
\(\Rightarrow\left[{}\begin{matrix}4a+6b+2c=a+2b+c\\4a+6b+2c=-a-2b-c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3a+4b+c=0\\5a+8b+3c=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-3a-4b\\c=-\dfrac{5a+8b}{3}\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow\left[{}\begin{matrix}\dfrac{\left|2a+3b-3a-4b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b-\dfrac{5a+8b}{3}\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|a+b\right|=\sqrt{2\left(a^2+b^2\right)}\\\left|a+b\right|=3\sqrt{2\left(a^2+b^2\right)}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a^2+2ab+b^2=2a^2+2b^2\\a^2+2ab+b^2=18a^2+18b^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\17a^2-2ab+17b^2=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow a=b\) \(\Rightarrow c=-3a-4b=-7a\)
Thế vào pt (d):
\(ax+ay-7a=0\Leftrightarrow x+y-7=0\)