Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn (O) lấy hai điểm G và E ( theo thứ tự A,G,E,D) sao cho tia EG cắt tia BA tại D. Đg thẳng vuông góc với BD tại D cắt BE tại C, đg thẳng CA cắt đg tròn (O) tại điểm thứ hai là F. Chứng minh tứ giác EADC nội tiếp
Giúp mjk vs mjk đg cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
\(\widehat{BFA}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BFA}=90^0\)(Hệ quả góc nội tiếp)
\(\Leftrightarrow\widehat{BFC}=90^0\)
Xét tứ giác DFBC có
\(\widehat{CDB}\) và \(\widehat{CFB}\) là hai góc đối
\(\widehat{CDB}+\widehat{CFB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DFBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tam giác DFB có:
\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)
=> Tứ giác DFBC nội tiếp
b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)
Mà cung AB= cùng BG
=> BF=BG
Lời giải:
Vì $A, G, E, B$ cùng thuộc $(O)$ nên $AGEB$ là tgnt
$\Rightarrow DG.DE=DA.DB(1)$
$\widehat{AEB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow \widehat{AEC}=180^0-\widehat{AEB}=90^0$
$\Rightarrow \widehat{AEC}+\widehat{CDA}=90^0+90^0=180^0$
$\Rightarrow EADC$ là tgnt
$\Rightarrow BA.BD=BE.BC(2)$
Lấy $(1)$ nhân $(2)$ theo vế suy ra: $DG.DE.BA=DA.BE.BC$
$\Rightarrow \frac{DA}{BA}=\frac{DG.DE}{BE.BC}$ (đpcm)
Em tự vẽ hình nhé!
Có: \(\widehat{CDA}=90^o\)
\(\widehat{CEA}=\widehat{BEA}=90^o\)
\(\Rightarrow\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)
Do đó: tứ giác EADC nội tiếp.