Tính giá trị biểu thức sau một cách hợp lí:
\(A=\left(1+\frac{1}{1+2}\right)\times\left(1+\frac{1}{1+2+3}\right)\times...\times\left(1+\frac{1}{1+2+...+997}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%
1 \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)
\(A=\frac{2018}{2}=1009\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)
\(B=\frac{1}{3}-\frac{1}{45}\)
\(B=\frac{14}{45}\)
2 \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)
\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)
\(=\frac{2017}{2018}\times1\)
=\(\frac{2017}{2018}\)
bạn nào xem giải thế có đúng ko
A = (4+\(\frac{1}{5}\)) . \(\frac{18}{19}\)+ (2+\(\frac{8}{5}\)) . \(\frac{21}{5}\)
A= \(\frac{21}{5}\).18/19 + 18/5 . 21/5
A= 21/5 (18/19 + 18/5)
A= 21/5 . 432/95
A= 9288/95
b= 25/2. (3+2/7) - 23/7. (5 + 1/2)
b= 25/2 . 23/7 - 23/7 . 11/2
b= 23/7 (25/2 -11/2)
b=23/7 . 7
b= 23
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt