( 2 điểm )
1) Cho phương trình x2- 2x + m = 0 ( với m là số thực thoả mãn m < 1 ). Chứng minh phương trình đã cho có hai nghiệm phân biệt.
2) Cho x1 và x2 là hai nghiệm của phương trình x2+ 2x- 1 = 0.
Tính giá trị của biểu thức P = \(\dfrac{1}{x_1}\)+ \(\dfrac{1}{x_2}\)
1) \(\Delta'=1-m>0\forall m< 1\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt
2) Do a = 1; c = -1 nên a và c trái dấu
Do đó phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)