Cho tam giác ABC vuông tại A trung tuyến AM có AB =5cm ,AC=12cm .Tính B ,C trung tuyến AM Gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
a, Áp dụng định lí Piatago trong \(\Delta ABC\) vuông tại \(A\) có:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=5^2+12^2\)
\(\Rightarrow BC=\sqrt{169}\)
\(\Rightarrow BC=13cm\)
Ta có: \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên:
\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5cm\)
b, Xét tứ giác \(ABCD\) có:
\(M\) là trung điểm của \(AD\)
\(M\) là trung điểm của \(BC\)
\(\Rightarrow ABCD\) là HBH
\(\Rightarrow AD=BC\)
c, Giả sử \(AB=AC\)
\(\Rightarrow\Delta ABC\)vuông cân ( Từ đầu \(\Delta ABC\) vuông rồi)
Xét HBH \(ABCD\) có:
\(\widehat{A}=90^0\)
\(\Rightarrow ABCD\) là HCN
Xét hình chữ nhật \(ABCD\) có:
\(AB=AC\left(gt\right)\)
\(\Rightarrow ABCD\) là hình vuông.
Để \(ABCD\) là hình vuông thì \(\Delta ABC\) vuông tại \(A\) cần thêm điều kiện \(AB=AC\)
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(BC^2=AB^2+AC^2\)( định lý Py - ta - go )
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(\Rightarrow BC=13cm\)( vì BC > 0 )
+ Vì AM là đường trung tuyến ứng với cạnh huyền BC trong tam giác vuông ABC ( gt)
\(\Rightarrow AM=\frac{1}{2}BC\)( tính chất tam giác vuông cân )
\(\Rightarrow AM=\frac{1}{2}.13\)
\(\Rightarrow AM=6,5\left(cm\right)\)
b ) Vì AM là đường trung tuyến của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow M\)là trung điểm của BC (1)
+ Vì D đối xứng với A qua M (gt)
\(\Rightarrow M\)là trung điểm của AD (2)
Từ (1) và (2) \(\Rightarrow\) 2 dường chéo BC và AD cắt nahu tại trung điểm M của mỗi đường
\(\Rightarrow\)Tứ giác \(ABCD\) là hình bình hành ( dấu hiệu nhận biết hình bình hành )
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
\(\Rightarrow\)Hình bình hành ABCD là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )
\(\Rightarrow AD=BC\)( tính chất hình chữ nhật )
c ) Theo câu b ta có \(ABCD\)là hình chữ nhật
Để hình chữ nhật \(ABCD\) là hình vuông
\(\Leftrightarrow AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow\Delta ABC\)vuông cân tại A .
Vậy \(\Delta ABC\)vuông cân tại A thì hình chữ hật ABCD là hình vuông
Chức bạn học tốt !!!
a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :
BC2 =AC2+AB2
hay BC^2 =12^2+9^2
BC^2=81+144=225
BC=15CM
b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc
=> AM=1/2 BC
hay AM=1/2.15
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc
=> GM=1/3 AM ( tính chất đường trung tuyến )
GM=1/3.7,5
GM=2,5 cm
a) Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao
=> AM vuông góc BC tại M
b) Vì M là trung điểm BC => MB = MC = BC/2 = 3/2 = 1,5 (cm)
Xét tam giác ABM vuông tại M (cmt) có:
AM^2 + BM^2 = AB^2 (pytago)
AM^2 + 1,5^2 = 5^2
AM^2 + 2,25 = 25
AM^2 = 25 - 2,25 = 22,75
=> AM = căn của 22,75 và AM xấp xỉ 4,8 (cm)
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\sqrt{5}\left(cm\right)\)
Vì AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{5}}{2}\)
a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:
\(AM^2+CM^2=CA^2\)
Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)
Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)
=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)
Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:
AC^2+AB^2=BC^2
Hay 5^2+AB^2=\(\sqrt{51}^2\)
=>AB=\(\sqrt{26}\)
b) BN=\(\frac{\sqrt{26}}{2}\)
CP=\(\frac{\sqrt{74}}{2}\)
Hình như vậy đó bạn
\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
=>AM=6,5cm
sin B=AC/BC=12/13
=>góc B=68 độ
=>góc C=22 độ
bc=√5\(^2\)+12\(^2\)=13(cm)
=>AM=6,5cm
sin B=AC/BC=12/13
=>góc B=68 độ
=>góc C=22 độ