Cho tam giác ABC vuông tại A,đường cao AH.Gọi D là trung điểm cảu HB,E là trung điểm của HC, F là trung điểm của AH.
CMR: CF vuông góc AD, BF vuông góc AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a,xét tam giác HDC có: E là trung điểm của HC nên DE là đường trung tuyến
A là trung điểm của DH nên AC là đường trung tuyến thứ 2
mà DE và AC cắt nhau tai F nên F là trọng tâm của tam giác HDC nên HF là đường trung tuyến của tam giac HDC hay HF cắt DC tại trung điểm của DC
b. vô lý sao lại HF=1/3DC đối chiếu lại câu a mà xem
k mih 1 k là dc rui
a) ∆ABC vuông tại A có AH là đường cao
⇒ AH² = BH . CH
= 9 . 16
= 144
⇒ AH = 12 (cm)
BC = BH + CH
= 9 + 16
= 25 (cm)
∆ABC vuông tại A có AH là đường cao
⇒ AB² = BH . BC
= 9 . 25
= 225
⇒ AB = 15 (cm)
AC² = CH . BC
= 16 . 25
= 400
⇒ AC = 20 (cm)
b) Do F là trung điểm AB
⇒ AF = AB : 2 = 15 : 2 = 7,5 (cm)
∆ACF vuông tại A
⇒ tanAFC = AC/AF = 20/7,5 = 8,3
⇒ ∠AFC ≈ 69⁰
c) Do AE ⊥ CF (gt)
⇒ AE là đường cao của ∆ACF
∆ACF vuông tại C có CE là đường cao
⇒ AC² = CE.CF (1)
∆ABC vuông tại A có AH là đường cao
⇒ AC² = BC.CH (2)
Từ (1) và (2) suy ra:
CE.CF = BC.CH