cho Δabc dong dang Δmnp theo ti so k .Biet ab=8cm,mn=4cm gia tri cua k =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)
a: a=xy=15
b=xy=15
b: y=15/x
x=15/y
c: Khi x=-20 thì y=15/x=-3/4
Khi x=10 thì y=15/x=3/2
d: Khi y=-20 thì x=15/y=-3/4
Khi y=10 thì x=15/y=3/2
\(\Delta ABC=\Delta MNP\Rightarrow\left\{{}\begin{matrix}AB=MN\\AC=MP=6\left(cm\right)\\BC=NP\end{matrix}\right.\Rightarrow AB+BC=MN+NP=8\left(cm\right)\)
Mà \(MN-NP=2\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}MP=6\left(cm\right)\\MN=\left(8+2\right):2=5\left(cm\right)\\NP=5-2=3\left(cm\right)\end{matrix}\right.\)
Xét tam giác MKN vuông tại K:
\(MN^2=MK^2+NK^2\) (Định lý Pytago).
\(\Rightarrow NK^2=MN^2-MK^2.\Leftrightarrow NK=\sqrt{MN^2-MK^2}.\)
\(\Rightarrow NK=\sqrt{3^2-MK^2}=\sqrt{9-MK^2}.\) (1)
Xét tam giác MKP vuông tại K:
\(MP^2=MK^2+PK^2\) (Định lý Pytago).
\(\Rightarrow PK^2=MP^2-MK^2.\Leftrightarrow PK=\sqrt{MP^2-MK^2}.\)
\(\Rightarrow PK=\sqrt{4^2-MK^2}=\sqrt{16-MK^2}.\) (2)
Từ (1) và (2) \(\Rightarrow\) \(NK>PK.\)
Ta có:
M N B C = 3 6 = 1 2 , P N C A = 2 , 5 5 = 1 2 , P M A B = 2 4 = 1 2 ⇒ M N B C = P N C A = P M A B = 1 2
Vậy ΔPMN ~ ΔABC (c - c - c)
Suy ra tỉ số đồng dạng k của hai tam giác là k = M N B C = 1 2
⇒ S M N P S A B C = k 2 = ( 1 2 ) 2 = 1 4
Đáp án: B
k=AB/MN=2