Chứng minh A<2
*Giúp mk giải nhoa rùi mk tick cho =)))))
:)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu như đề là A = 1-2+22-...-22005 + 22006 thì làm như vầy nè !
ta có : A = ( ghi lại đề )
=> 2A = 2 -22+23-...+22005-22006+22007
=>2A+A = 3A = 1 - 2 + 22 - ...-22005 + 2 - 22 + 23 -...+22005 - 22006 + 22007
=> 3A = 1 + 22007
=> A = \(\frac{1+2^{2007}}{3}\)
vậy ....
Hinh nhu ban sai de hay sao á !
Đề phải là A=1-2+22-....-22005+22006
Gía trị 1 phần là:
48:(1+5)=8(tuổi)
Hiện nay,con có số tuổi là:
8 nhân 1 =8(tuổi)
Hiện nay.bố có số tuổi là:
8 nhân 5=40(tuổi)
Sau đó bạn giải thích như lời giải trước là được
a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
ABH=EBH(BH là tia phân giác của ABE)
Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)
\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{1000}{999}\)
\(=\frac{3\times4\times5\times...\times1000}{2\times3\times4\times...\times999}=\frac{1000}{2}=500\)
\(\left(n+2018\right)\left(n+1\right)=\left(n+2018\right)n+n+2018\)
\(=n^2+2018n+n+2018\)
\(=n^2+2019n+2018=n\left(n+2019\right)+2018\)
Nếu n lẻ thì n + 2019 là chẵn => n(n+2019) là chẳn
Nếu n chẵn thì n(n+2019) là chẵn
=> n(n+2019) +2018 luôn chẵn hay (n+2018)(n+1) chia hết cho 2
với n là số lẻ ta có n+1 là số chẵn>2 chia hết cho 2
với n là số chẳn thì n+2018 là số chẵn lớn hơn 2 chia hết cho 2
^hok tốt^
A < \(1\) + \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+......+\(\frac{1}{49.50}\)
=> A < \(1+1\) - \(\frac{1}{2}+\frac{1}{2}\)-\(\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)\(\)
=> A <\(1+1\) -\(\frac{1}{50}\)
=> A < \(2-\frac{1}{50}\)
Mà \(2-\frac{1}{50}< 2\)=> A < 2